Macromolecular Research

, Volume 27, Issue 7, pp 625–639 | Cite as

Deformable and Stretchable Electrodes for Soft Electronic Devices

  • Yonghee Kim
  • O Young Kweon
  • Yousang Won
  • Joon Hak OhEmail author


Soft electronic materials are key elements for realizing wearable, attachable, and stick-on electronics. The development of deformable and stretchable electrodes is a key research area as they are one of the most important components for soft electronic devices. Recently, significant progress in the development of deformable and stretchable electrodes has been achieved with organic materials offering electrical tunability, simple mechanical implementation, and desirable chemical and optical properties. In this review, we present recent progress in the design of stretchable electronics based on deformable conducting materials, including their fabrication and conductivity properties and the methods that are employed to enhance performance. In addition, we review the development status of organic- and carbon- based conductive materials and their hybrid composites being used for electronic applications, including carbon nanotubes, graphene, metal composites, conductive polymers, hybrid composites, and ion gel composites. The structural aspects, such as wavy or mesh configurations, of stretchable electrodes and other high-performance conducting materials are investigated intensively. Many stretchable electrodes show great potential for use in future electronics such as electronic skin (e-skin) and stretchable displays, which require reversible deformation and a high degree of operational stability.


stretchable electrode organic electrode electrical conductor ionic conductor stretchability 


  1. (1).
    A. Chortos, J. Liu, and Z. Bao, Nat. Mater., 15, 937 (2016).CrossRefPubMedGoogle Scholar
  2. (2).
    M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya, Nature, 499, 458 (2013).CrossRefPubMedGoogle Scholar
  3. (3).
    J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, and Z. Suo, Nature, 489, 133 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  4. (4).
    R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal, A. Shapira, Y. Shacham-Diamand, and T. Dvir, Nat. Mater., 15, 679 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  5. (5).
    C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and A. Javey, Nat. Mater., 12, 899 (2013).CrossRefPubMedGoogle Scholar
  6. (6).
    D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nat. Nanotechnol., 6, 788 (2011).CrossRefPubMedGoogle Scholar
  7. (7).
    D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, and J. A. Rogers, Science, 333, 838 (2011).CrossRefPubMedGoogle Scholar
  8. (8).
    Y. Cao, T. G. Morrissey, E. Acome, S. I. Allec, B. M. Wong, C. Keplinger, and C. Wang, Adv. Mater., 29, 1605099 (2017).CrossRefGoogle Scholar
  9. (9).
    Y. Cheng, R. R. Wang, J. Sun, and L. Gao, Adv. Mater., 27, 7365 (2015).CrossRefPubMedGoogle Scholar
  10. (10).
    D. H. Ho, Q. Sun, S. Y. Kim, J. T. Han, D. H. Kim, and J. H. Cho. Adv. Mater., 28, 2601 (2016).CrossRefPubMedGoogle Scholar
  11. (11).
    J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D. H. Kim, Nat. Commun., 5, 5747 (2014).CrossRefPubMedGoogle Scholar
  12. (12).
    M. L. Jin, S. Park, J. S. Kim, S. H. Kwon, S. Y. Zhang, M. S. Yoo, S. Jang, H. J. Koh, S. Y. Cho, S. Y. Kim, C. W. Ahn, K. Cho, S. G. Lee, D. H. Kim, and H. T. Jung, Adv. Mater., 30, 1706851 (2018).CrossRefGoogle Scholar
  13. (13).
    D. H. Kim, R. Ghaffari, N. Lu, and J. A. Rogers. Annu. Rev. Biomed. Eng., 14, 113 (2012).CrossRefPubMedGoogle Scholar
  14. (14).
    E. K. Lee, M. Y. Lee, C. H. Park, H. R. Lee, and J. H. Oh, Adv. Mater., 29, 1703638 (2017).CrossRefGoogle Scholar
  15. (15).
    M. Y. Lee, H. R. Lee, C. H. Park, S. G. Han, and J. H. Oh, Acc. Chem. Res., 51, 2829 (2018).CrossRefPubMedGoogle Scholar
  16. (16).
    Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, and J. H. Oh, Chem, 3, 724 (2017).CrossRefGoogle Scholar
  17. (17).
    Y. H. Lee, O. Y. Kweon, H. Kim, J. H. Yoo, S. G. Han, and J. H. Oh, J. Mater. Chem. C, 6, 8569 (2018).CrossRefGoogle Scholar
  18. (18).
    O. Y. Kweon, M. Y. Lee, T. Park, H. Jang, A. Jeong, M.-K. Um, and J. H. Oh, J. Mater. Chem. C, 7, 1525 (2019).CrossRefGoogle Scholar
  19. (19).
    T. Lee, W. Lee, S.-W. Kim, J. J. Kim, and B.-S. Kim, Adv. Funct. Mater., 26, 6206 (2016).CrossRefGoogle Scholar
  20. (20).
    M. Wang, I. V. Anoshkin, A. G. Nasibulin, J. T. Korhonen, J. Seitsonen, J. Pere, E. I. Kauppinen, R. H. A. Ras, and O. Ikkala, Adv. Mater., 25, 2428 (2013).CrossRefPubMedGoogle Scholar
  21. (21).
    T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, Science, 321, 1468 (2008).CrossRefPubMedGoogle Scholar
  22. (22).
    Y. S. Zhang, T. X. Man, X. Li, H. W. Zhu, and Z. H. Li, 2014 Ieee 27th International Conference on Micro Electro Mechanical Systems (Mems), 624, (2014).Google Scholar
  23. (23).
    J. Xu, Z. Tan, W. Zeng, G. Chen, S. Wu, Y. Zhao, K. Ni, Z. Tao, M. Ikram, H. Ji, and Y. Zhu, Adv. Mater., 28, 5222 (2016).CrossRefPubMedGoogle Scholar
  24. (24).
    S. H. Shin, S. Ji, S. Choi, K. H. Pyo, B. W. An, J. Park, J. Kim, J. Y. Kim, K. S. Lee, S. Y. Kwon, J. Heo, B. G. Park, and J. U. Park, Nat. Commun., 8, 14950 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  25. (25).
    E. K. Lee, Y. Kim, J. Back, E. Lee, and J. H. Oh, J. Mater. Chem. C, 6, 6672 (2018).CrossRefGoogle Scholar
  26. (26).
    C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, Nat. Commun., 5, 3121 (2014).CrossRefPubMedGoogle Scholar
  27. (27).
    H. Y. Jang, S.-K. Lee, S. H. Cho, J.-H. Ahn, and S. Park, Chem. Mater., 25, 3535 (2013).CrossRefGoogle Scholar
  28. (28).
    Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, and Z. L. Wang, Nat. Commun., 9, 244 (2018).CrossRefPubMedPubMedCentralGoogle Scholar
  29. (29).
    Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater., 21, 1076 (2011).CrossRefGoogle Scholar
  30. (30).
    D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, Energy Environ. Sci., 5, 9662 (2012).CrossRefGoogle Scholar
  31. (31).
    M. Vosgueritchian, D. J. Lipomi, and Z. Bao, Adv. Funct. Mater., 22, 421 (2012).CrossRefGoogle Scholar
  32. (32).
    D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C. K. Tee, J. A. Bolander, and Z. Bao, Chem. Mater., 24, 373 (2012).CrossRefGoogle Scholar
  33. (33).
    H. Yabu, K. Nagamine, J. Kamei, Y. Saito, T. Okabe, T. Shimazaki, and M. Nishizawa, RSC Adv., 5, 88414 (2015).CrossRefGoogle Scholar
  34. (34).
    B. W. An, B. G. Hyun, S.-Y. Kim, M. Kim, M.-S. Lee, K. Lee, J. B. Koo, H. Y. Chu, B.-S. Bae, and J.-U. Park, Nano Lett., 14, 6322 (2014).CrossRefPubMedGoogle Scholar
  35. (35).
    M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, Nano Lett., 13, 2814 (2013).CrossRefPubMedGoogle Scholar
  36. (36).
    S. Han, C. Liu, H. Xu, D. Yao, K. Yan, H. Zheng, H.-J. Chen, X. Gui, S. Chu, and C. Liu, npj Flex. Electron., 2, 16 (2018).CrossRefGoogle Scholar
  37. (37).
    J. Y. Sun, C. Keplinger, G. M. Whitesides, and Z. G. Suo, Adv. Mater., 26, 7608 (2014).CrossRefPubMedGoogle Scholar
  38. (38).
    C. C. Kim, H. H. Lee, K. H. Oh, and J. Y. Sun, Science, 353, 682 (2016).CrossRefPubMedGoogle Scholar
  39. (39).
    T. Cheng, Y. Z. Zhang, W. Y. Lai, and W. Huang, Adv. Mater., 27, 3349 (2015).CrossRefPubMedGoogle Scholar
  40. (40).
    M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. A. Bao, Adv. Mater., 25, 5997 (2013).CrossRefPubMedGoogle Scholar
  41. (41).
    M. Park, J. Park, and U. Jeong, Nano Today, 9, 244 (2014).CrossRefGoogle Scholar
  42. (42).
    P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, Adv. Mater., 24, 3326 (2012).CrossRefPubMedGoogle Scholar
  43. (43).
    W. M. Choi, J. Song, D.-Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, Nano Lett., 7, 1655 (2007).CrossRefPubMedGoogle Scholar
  44. (44).
    J. A. Fan, W. H. Yeo, Y. W. Su, Y. Hattori, W. Lee, S. Y. Jung, Y. H. Zhang, Z. J. Liu, H. Y. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. G. Huang, and J. A. Rogers, Nat. Commun., 5, 3266 (2014).CrossRefPubMedGoogle Scholar
  45. (45).
    T. C. Shyu, P. F. Damasceno, P. M. Dodd, A. Lamoureux, L. Z. Xu, M. Shlian, M. Shtein, S. C. Glotzer, and N. A. Kotov, Nat. Mater., 14, 785 (2015).CrossRefPubMedGoogle Scholar
  46. (46).
    V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett., 93, 086602 (2004).CrossRefPubMedGoogle Scholar
  47. (47).
    Q. Cao, S.-H. Hur, Z.-T. Zhu, Y. G. Sun, C.-J. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, Adv. Mater., 18, 304 (2006).CrossRefGoogle Scholar
  48. (48).
    O. Y. Kweon, S. J. Lee, and J. H. Oh, NPG Asia Mater., 10, 540 (2018).CrossRefGoogle Scholar
  49. (49).
    P. Mazurek, S. Vudayagiri, and A. L. Skov, Chem. Soc. Rev., 48, 1448 (2019).CrossRefPubMedGoogle Scholar
  50. (50).
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992.Google Scholar
  51. (51).
    M. Shin, J. H. Song, G. H. Lim, B. Lim, J. J. Park, and U. Jeong, Adv. Mater., 26, 3706 (2014).CrossRefPubMedGoogle Scholar
  52. (52).
    J. H. Song, Y. T. Kim, S. Cho, W. J. Song, S. Moon, C. G. Park, S. Park, J. M. Myoung, and U. Jeong, Adv. Mater., 29, 1702625 (2017).CrossRefGoogle Scholar
  53. (53).
    K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, and K. Jiang, Adv. Funct. Mater., 21, 2721 (2011).CrossRefGoogle Scholar
  54. (54).
    Y. Zhang, C. J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y. T. Zhu, and Q. X. Jia, Adv. Mater., 22, 3027 (2010).CrossRefPubMedGoogle Scholar
  55. (55).
    F. Xu, X. Wang, Y. Zhu, and Y. Zhu, Adv. Funct. Mater., 22, 1279 (2012).CrossRefGoogle Scholar
  56. (56).
    L. Cai, J. Li, P. Luan, H. Dong, D. Zhao, Q. Zhang, X. Zhang, M. Tu, Q. Zeng, W. Zhou, and S. Xie, Adv. Funct. Mater., 22, 5238 (2012).CrossRefGoogle Scholar
  57. (57).
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature, 457, 706 (2009).CrossRefPubMedGoogle Scholar
  58. (58).
    R.-H. Kim, M.-H. Bae, D. G. Kim, H. Cheng, B. H. Kim, D.-H. Kim, M. Li, J. Wu, F. Du, H.-S. Kim, S. Kim, D. Estrada, S. W. Hong, Y. Huang, E. Pop, and J. A. Rogers, Nano Lett., 11, 3881 (2011).CrossRefPubMedGoogle Scholar
  59. (59).
    J.-Y. Hong, W. Kim, D. Choi, J. Kong, and H. S. Park, ACS Nano, 10, 9446 (2016).CrossRefPubMedGoogle Scholar
  60. (60).
    X. Wang, I. Kholmanov, H. Chou, and R. S. Ruoff, ACS Nano, 9, 8737 (2015).CrossRefPubMedGoogle Scholar
  61. (61).
    J. Mu, C. Hou, G. Wang, X. Wang, Q. Zhang, Y. Li, H. Wang, and M. Zhu, Adv. Mater., 28, 9491 (2016).CrossRefPubMedGoogle Scholar
  62. (62).
    H. Lee, K. Lee, J. T. Park, W. C. Kim, and H. Lee, Adv. Funct. Mater., 24, 3276 (2014).CrossRefGoogle Scholar
  63. (63).
    S. Yun, X. Niu, Z. Yu, W. Hu, P. Brochu, and Q. Pei, Adv. Mater., 24, 1321 (2012).CrossRefPubMedGoogle Scholar
  64. (64).
    S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M.-Y. Yang, and S. H. Ko, Adv. Mater., 26, 5808 (2014).CrossRefPubMedGoogle Scholar
  65. (65).
    J. Song, J. Li, J. Xu, and H. Zeng, Nano Lett., 14, 6298 (2014).CrossRefPubMedGoogle Scholar
  66. (66).
    S. Soltanian, R. Rahmanian, B. Gholamkhass, N. M. Kiasari, F. Ko, and P. Servati, Adv. Energy Mater., 3, 1332 (2013).CrossRefGoogle Scholar
  67. (67).
    S. Huang, Y. Liu, C. F. Guo, and Z. Ren, Adv. Electron. Mater., 3, 1600534 (2017).CrossRefGoogle Scholar
  68. (68).
    D. C. Hyun, M. Park, C. Park, B. Kim, Y. Xia, J. H. Hur, J. M. Kim, J. J. Park, and U. Jeong, Adv. Mater., 23, 2946 (2011).CrossRefPubMedGoogle Scholar
  69. (69).
    Y. Yu, Y. Zhang, K. Li, C. Yan, and Z. Zheng, Small, 11, 3444 (2015).CrossRefPubMedGoogle Scholar
  70. (70).
    M. Drack, I. Graz, T. Sekitani, T. Someya, M. Kaltenbrunner, and S. Bauer, Adv. Mater., 27, 34 (2015).CrossRefPubMedGoogle Scholar
  71. (71).
    S. Savagatrup, E. Chan, S. M. Renteria-Garcia, A. D. Printz, A. V. Zaretski, T. F. O’Connor, D. Rodriquez, E. Valle, and D. J. Lipomi, Adv. Funct. Mater., 25, 427 (2015).CrossRefGoogle Scholar
  72. (72).
    Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann, and Z. Bao, Sci. Adv., 3, e1602076 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  73. (73).
    J. Li, S. Qi, J. Liang, L. Li, Y. Xiong, W. Hu, and Q. Pei, ACS Appl. Mater. Interfaces, 7, 14140 (2015).CrossRefPubMedGoogle Scholar
  74. (74).
    P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, and S. H. Ko, Adv. Funct. Mater., 24, 5671 (2014).CrossRefGoogle Scholar
  75. (75).
    D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater., 23, 1482 (2011).CrossRefPubMedGoogle Scholar
  76. (76).
    M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).CrossRefPubMedGoogle Scholar
  77. (77).
    C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng, Y. Zhang, Y. Sun, Q. Li, S. Fan, and K. Jiang, Adv. Funct. Mater. 20, 885 (2010).CrossRefGoogle Scholar
  78. (78).
    S. Ahn, A. Choe, J. Park, H. Kim, J. G. Son, S.-S. Lee, M. Park, and H. Ko, J. Mater. Chem. C, 3, 2319 (2015).CrossRefGoogle Scholar
  79. (79).
    T. Ann Kim, S.-S. Lee, H. Kim, and M. Park, RSC Adv., 2, 10717 (2012).CrossRefGoogle Scholar
  80. (80).
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).CrossRefGoogle Scholar
  81. (81).
    T. Chen, Y. Xue, A. K. Roy, and L. Dai, ACS Nano, 8, 1039 (2014).CrossRefPubMedGoogle Scholar
  82. (82).
    B. Zhu, S. Gong, F. Lin, Y. Wang, Y. Ling, T. An, and W. Cheng, Adv. Electron. Mater., 5, 1800509 (2019).CrossRefGoogle Scholar
  83. (83).
    H. Moon, H. Lee, J. Kwon, Y. D. Suh, D. K. Kim, I. Ha, J. Yeo, S. Hong, and S. H. Ko, Sci. Rep., 7, 41981 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  84. (84).
    H. Lee, S. Hong, J. Lee, Y. D. Suh, J. Kwon, H. Moon, H. Kim, J. Yeo, and S. H. Ko, ACS Appl. Mater. Interfaces, 8, 15449 (2016).CrossRefPubMedGoogle Scholar
  85. (85).
    Y. Won, A. Kim, W. Yang, S. Jeong, and J. Moon, NPG Asia Mater., 6, e132 (2014).CrossRefGoogle Scholar
  86. (86).
    Y. Cheng, S. Wang, R. Wang, J. Sun, and L. Gao, J. Mater. Chem. C, 2, 5309 (2014).CrossRefGoogle Scholar
  87. (87).
    Y. Kim, E. K. Lee, and J. H. Oh, Adv. Funct. Mater., 1900650 (2019).Google Scholar
  88. (88).
    P. Wei, J. H. Oh, G. Dong, and Z. Bao, J. Am. Chem. Soc., 132, 8852 (2010).CrossRefPubMedGoogle Scholar
  89. (89).
    J. H. Oh, P. Wei, and Z. Bao, Appl. Phys. Lett., 97, 243305 (2010).CrossRefGoogle Scholar
  90. (90).
    T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, and T. Sasaki, Macromolecules, 45, 3859 (2012).CrossRefGoogle Scholar
  91. (91).
    S. Jeong, S. Ahn, and T. Lee, Macromol. Res., 27, 2 (2019).CrossRefGoogle Scholar
  92. (92).
    S. Kim, B. Sanyoto, W. Park, S. Kim, S. Mandal, J. Lim, Y. Noh, and J. Kim, Adv. Mater., 28, 10149 (2016).CrossRefPubMedGoogle Scholar
  93. (93).
    D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Nanoscale, 5, 977 (2013).CrossRefPubMedGoogle Scholar
  94. (94).
    J. Mannayil, S. M. Raman, J. Sankaran, R. Raman, and J. M. K. Ezhuthachan, Phys. Status Solidi A, 215, 1701003 (2018).CrossRefGoogle Scholar
  95. (95).
    C. Jeong, P. Nair, M. Khan, M. Lundstrom, and M. A. Alam, Nano Lett., 11, 5020 (2011).CrossRefPubMedGoogle Scholar
  96. (96).
    I. N. Kholmanov, M. D. Stoller, J. Edgeworth, W. H. Lee, H. Li, J. Lee, C. Barnhart, J. R. Potts, R. Piner, D. Akinwande, J. E. Barrick, and R. S. Ruoff, ACS Nano, 6, 5157 (2012).CrossRefPubMedGoogle Scholar
  97. (97).
    M. A. Gonzalez, J. R. Simon, A. Ghoorchian, Z. Scholl, S. Lin, M. Rubinstein, P. Marszalek, A. Chilkoti, G. P. López, and X. Zhao, Adv. Mater., 29, 1604743 (2017).CrossRefGoogle Scholar
  98. (98).
    K. Haraguchi and T. Takehisa, Adv. Mater., 14, 1120 (2002).CrossRefGoogle Scholar
  99. (99).
    C. Keplinger, J. Y. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, and Z. G. Suo, Science, 341, 984 (2013).CrossRefPubMedGoogle Scholar
  100. (100).
    L. L. Li, L. J. Pan, Z. Ma, K. Yan, W. Cheng, Y. Shi, and G. H. Yu, Nano Lett., 18, 3322 (2018).CrossRefPubMedGoogle Scholar
  101. (101).
    Q. Zhang, X. Xu, D. Lin, W. Chen, G. Xiong, Y. Yu, T. S. Fisher, and H. Li, Adv. Mater., 28, 2229 (2016).CrossRefPubMedGoogle Scholar
  102. (102).
    Y. Si, L. Wang, X. Wang, N. Tang, J. Yu, and B. Ding, Adv. Mater., 28, 9512 (2016).CrossRefPubMedGoogle Scholar
  103. (103).
    H. Kang, G. Yi, Y. J. Kim, and J. H. Cho, Macromol. Res., 26, 1066 (2018).CrossRefGoogle Scholar
  104. (104).
    S. H. Lee and D. S. Lee, Macromol. Res., 27, 460 (2019).CrossRefGoogle Scholar
  105. (105).
    H. U. Chung, B. H. Kim, J. Y. Lee, J. Lee, Z. Xie, E. M. Ibler, K. Lee, A. Banks, J. Y. Jeong, J. Kim, C. Ogle, D. Grande, Y. Yu, H. Jang, P. Assem, D. Ryu, J. W. Kwak, M. Namkoong, J. B. Park, Y. Lee, D. H. Kim, A. Ryu, J. Jeong, K. You, B. Ji, Z. Liu, Q. Huo, X. Feng, Y. Deng, Y. Xu, K. Jang, J. Kim, Y. Zhang, R. Ghaffari, C. M. Rand, M. Schau, A. Hamvas, D. E. Weese-Mayer, Y. Huang, S. Lee, C. H. Lee, N. R. Shanbhag, A. S. Paller, S. Xu, and J. A. Rogers, Science, 363, 947 (2019).CrossRefGoogle Scholar
  106. (106).
    M. Ha, S. Lim, and H. Ko, J. Mater. Chem. B, 6, 4043 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Yonghee Kim
    • 1
  • O Young Kweon
    • 1
  • Yousang Won
    • 2
  • Joon Hak Oh
    • 2
    Email author
  1. 1.Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang, GyeongbukKorea
  2. 2.School of Chemical and Biological Engineering, Institute of Chemical ProcessesSeoul National UniversitySeoulKorea

Personalised recommendations