Effect of the Monomer Ratio on the Properties of Melt-Polymerized Polycarbonate

  • Byung Hoon Lim
  • Jin Woo Yi
  • O Ok ParkEmail author


In this study, the effects of bisphenol A (BPA) and diphenyl carbonate (DPC) molar ratio, on the properties of melt-polymerized polycarbonate (PC) were investigated. The molecular size distribution theory proposed by Flory was applied, to melt polymerization of PC to predict physical properties, affected by the molar ratio of BPA and DPC. A terminal OH group affected the viscosity of PC at high temperatures, leading to instability during processing. With increase in the DPC/BPA molar ratio, terminal OH content decreased, albeit different from the theoretical predicted value, because of the volatilization of DPC. Additionally, BPA residual amount was affected by BPA and DPC molar ratio. BPA is regulated in countries because of its similarity to estrogen, and BPA residues can be predicted and managed by using the Flory equation.


polycarbonate melt polymerization molecular size distribution hydroxyl end BPA residue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Research Fund (PNK6080) of Korea Institute of Materials Science (KIMS).


  1. (1).
    J. A. King, Jr., D. G. LeGrand, and J. T. Bendler, Handbook of Polycarbonate Science and Technology, Marcel Dekker, New York, 2000, Chap. 2.Google Scholar
  2. (2).
    H. Schnell, Chemistry and Physics of Polycarbonates, Wiley, New York, 1964, Chap. 3.Google Scholar
  3. (3).
    H. Schnell, L. Bottenbruch, and H. Krimm, US Patent 3028365 (1962).Google Scholar
  4. (4).
    D. W. Fox, General Electric Company, US Patent 3153008 (1964).Google Scholar
  5. (5).
    D. W. Fox, General Electric Company, US Patent 3148172 (1964).Google Scholar
  6. (6).
    D. W. Fox, Polycarbonates, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley and Sons, New York, 1982, Vol. 18, p 479.Google Scholar
  7. (7).
    T. Sakashita and T. Shimoda, GE Plastics Japan, European Patent A3511168 (1988).Google Scholar
  8. (8).
    S. Fukuoka, I. Fukawa, and M. Tojo, Green Chemistry, 5, 497 (2003).CrossRefGoogle Scholar
  9. (9).
    A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Endocrinology, 132, 2279 (1993).CrossRefGoogle Scholar
  10. (10).
    L. A. Vrooman, J. M. Oatley, J. E. Griswold, T. J. Hassold, and P. A. Hunt, PLOS Genetics, 11, 1 (2015).CrossRefGoogle Scholar
  11. (11).
    C. Han and Y. C. Hong, Curr. Hypertens. Rep., 18, 11 (2016).Google Scholar
  12. (12).
  13. (13).
    Danish Ministry of Environment, Migration of Bisphenol A from Polycarbonate Plastic of Different Qualities, Environmental Project No. 1710 (2015).Google Scholar
  14. (14).
    D. Lemus, The Regulation of Bisphenol A in Denmark and Norway: How the Problem of Chemical Safety is Framed and Addressed Amidst Scientific Uncertainty, Norwegian Univ. of Life Science, Master Thesis (2015).Google Scholar
  15. (15).
    K. Inoue, General Electric Company, US Patent 6022943A (1999).Google Scholar
  16. (16).
    P. J. Flory, J. Am. Chem. Soc, 58, 1877 (1936).CrossRefGoogle Scholar
  17. (17).
    P. J. Flory, J. Am. Chem. Soc, 64, 2205 (1942).CrossRefGoogle Scholar
  18. (18).
    J. R. Shaefgen and P. J. Flory, J. Am. Chem. Soc., 70, 2709 (1948).CrossRefGoogle Scholar
  19. (19).
    P. J. Flory, Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, New York, 1953, Chap 8.Google Scholar
  20. (20).
    J. Kim, H. S. Gracz, G. W. Roberts, and D. J. Kiserow, Polymer, 49, 394 (2008).CrossRefGoogle Scholar
  21. (21).
    S. N. Hersh and K. Y. Choi, J. Appl. Polym. Sci., 41, 1033 (1990).CrossRefGoogle Scholar
  22. (22).
    Y. Kim and K. Y. Choi, J. Appl. Polym. Sci., 49, 747 (1993).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering (BK21+ Graduate Program)Korea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  2. 2.Lotte Chemical Research InstituteDaejeonKorea
  3. 3.Carbon composite department, Composites Research DivisionKorea Institute of Materials Science (KIMS)ChangwonKorea

Personalised recommendations