Advertisement

High-Performance Fluorinated Ethylene-Propylene/Graphite Composites Interconnected with Single-Walled Carbon Nanotubes

  • Ho-Joon Park
  • Jong Seok Woo
  • Sang Ha Kim
  • Kwang Sang Park
  • Sung Hoon Park
  • Soo-Young ParkEmail author
Article
  • 5 Downloads

Abstract

Herein, we report a novel method for the fabrication of highly conductive fluorinated ethylene-propylene (FEP)/graphite nanocomposites for high-temperature bipolar plates (BPs) by incorporating the well-dispersed single-walled carbon nanotube (SWCNT) as a secondary filler in the FEP matrix. The SWCNTs were pre-dispersed with FEP powder by sonication in ethanol and subsequently mixed with graphite powder by ball milling. The composite BPs were prepared from the mixed powder by compression molding. The resulting FEP/graphite/SWCNT nanocomposite containing 80 wt% graphite (500 µm particles) and 0.1 wt% SWCNT exhibited high electrical conductivity (210 S cm−1) superior to that of the composite devoid of SWCNTs (120 S cm−1) by modulating the electrical transportation pathways between graphite particles through the SWCNTs. A small amount of the incorporated SWCNTs (0.1 wt%) also improved chemical inertness to phosphoric acid. Hence, the prepared FEP/graphite nanocomposites with SWCNTs as a secondary filler exhibited a robust performance for application as high-temperature BPs for phosphoric acid fuel cells.

Keywords

graphite single-walled carbon nanotube fluorinated ethylene-propylene bipolar plate phosphoric acid fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation (NRF-2016M1A2A2937163) and the Korea Institute of Energy Technology Evaluation and Planning of Korea (KETEP-20163010032040).

Supplementary material

References

  1. (1).
    N. Sammes, R. Bove, and K. Stahl, Curr. Opin. Solid State Mater. Sci., 8, 372 (2004).CrossRefGoogle Scholar
  2. (2).
    R. K. Pachauri and Y. K. Chauhan, Int. J. Elec. Power Energ. Syst., 74, 49 (2016).CrossRefGoogle Scholar
  3. (3).
    X. Chen, Y. Wang, Y. Zhao, and Y. Zhou, Energy, 101, 359 (2016).CrossRefGoogle Scholar
  4. (4).
    B. D. Cunningham, J. Huang, and D. G. Baird, Int. Mater. Rev., 52, 1 (2013).CrossRefGoogle Scholar
  5. (5).
    Q. Wang, G. D. Wen, J. N. Chen, and D. S. Su, J. Mater. Sci. Technol., 34, 2205 (2018).CrossRefGoogle Scholar
  6. (6).
    S. R. Dhakate, S. Shanna, A. Borah, R. B. Mathur, and T. L. Dhami, Energy Fuel., 22, 3329 (2008).CrossRefGoogle Scholar
  7. (7).
    Y. Sung, T.-H Kim, and B. Lee, Marcomol. Res., 24, 143 (2016).Google Scholar
  8. (8).
    N. H. Kim, T. Kuila, K. M. Kim, S. H. Nahm, and J. H. Lee, Polym. Test., 31, 537 (2012).CrossRefGoogle Scholar
  9. (9).
    K.-Y. Shin, S. Y. Lee, and S.-S. Lee, Marcomol. Res., 24, 170 (2016).Google Scholar
  10. (10).
    R. B. Mathur, S. R. Dhakate, D. K. Gupta, T. L. Dhami, and R. K. Aggarwal, J. Mater. Process. Technol., 203, 184 (2008).CrossRefGoogle Scholar
  11. (11).
    M. H. Lee, H. Y. Kim, S. M. Oh, B. C. Kim, D. Bang, J. T. Han, and J. S. Woo, Int. J. Hydrogen. Energ., 43, 21918 (2018).CrossRefGoogle Scholar
  12. (12).
    S. Bal and S. S. Samal, Bull. Mater. Sci., 30, 379 (2007).CrossRefGoogle Scholar
  13. (13).
    Y. Y. Huang and E. M. Terentjev, Polymer, 4, 275 (2012).CrossRefGoogle Scholar
  14. (14).
    H. C. Hwang, J. S. Woo, and S. Y. Park, Carbohyd Polym, 196, 168 (2018).CrossRefGoogle Scholar
  15. (15).
    C. A. Mitchell, J. L. Bahr, S. Arepalli, J. M. Tour, and R. Krishnamoorti, Macromolecules, 35, 8825 (2002).CrossRefGoogle Scholar
  16. (16).
    P. Pötschke, A. R. Bhattacharyya, and A. Janke, Polymer, 44, 8061 (2003).CrossRefGoogle Scholar
  17. (17).
    E. T. Thostenson and T. W. Chou, J. Phys. D. Appl. Phys., 35, L77 (2002).CrossRefGoogle Scholar
  18. (18).
    N. Abbas and H. T. Kim, Marcomol. Res., 24, 1084 (2016).Google Scholar
  19. (19).
    J. M. Kim, D. H. Kim, J. Kim, J. W. Lee, and W. N. Kim, Marcomol. Res., 25, 190 (2017).Google Scholar
  20. (20).
    S. Chunhui, Int. J. Hydrogen. Energ., 33, 1035 (2008).CrossRefGoogle Scholar
  21. (21).
    S. Dhakate, R. Mathur, B. Kakati, and T. Dhami, Int. J. Hydrogen. Energ., 32, 4537 (2007).CrossRefGoogle Scholar
  22. (22).
    G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 393, 346 (1998).CrossRefGoogle Scholar
  23. (23).
    T. W. Odom, J. L. Huang, and C. M. Lieber, Ann. N. Y. Acad. Sci., 960, 203 (2002).CrossRefGoogle Scholar
  24. (24).
    N. Gamze Karsli, S. Yesil, and A. Aytac, Compos. Part B, 63, 154 (2014).CrossRefGoogle Scholar
  25. (25).
    J. H. Lee, Y. K. Jang, C. E. Hong, N. H. Kim, P. Li, and H. K. Lee, J. Power Sources, 193, 523 (2009).CrossRefGoogle Scholar
  26. (26).
    S. Radhakrishnan, B. T. S. Ramanujam, A. Adhikari, and S. Sivaram, J. Power Sources, 163, 702 (2007).CrossRefGoogle Scholar
  27. (27).
    B. Krause, P. Pötschke, E. Ilin, and M. Predtechenskiy, Polymer, 98, 45 (2016).CrossRefGoogle Scholar
  28. (28).
    K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B., 104, 8911 (2000).CrossRefGoogle Scholar
  29. (29).
    H. J. Griesser, D. Youxian, A. E. Hughes, T. R. Gengenbach, and W. H. Mau, Langmuir, 7, 2484 (1991).CrossRefGoogle Scholar
  30. (30).
    H. Ma, B. Chu, and B. S. Hsiao, Eur. Polym. J., 87, 398 (2017).CrossRefGoogle Scholar
  31. (31).
    K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Part A, 38, 1675 (2007).CrossRefGoogle Scholar
  32. (32).
    D. Urk, E. Demir, O. Bulut, D. Cakiroglu, F. C. Cebeci, M. L. Ovecoglu, and H. Cebeci, Compos. Struct., 155, 255 (2016).CrossRefGoogle Scholar
  33. (33).
    R. Socher, B. Krause, M. T. Müller, R. Boldt, and P. Pötschke, Polymer, 53, 495 (2012).CrossRefGoogle Scholar
  34. (34).
    P. Pötschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).CrossRefGoogle Scholar
  35. (35).
    A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, J. Phys. Chem. C, 115, 5422 (2011).CrossRefGoogle Scholar
  36. (36).
    M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc., 131, 3611 (2009).CrossRefGoogle Scholar
  37. (37).
    S. R. Dhakate, S. Sharma, N. Chauhan, R. K. Seth, and R. B. Mathur, Int. J. Hydrogen. Energ., 35, 4195 (2010).CrossRefGoogle Scholar
  38. (38).
    Y. Show and K. Takahashi, J. Power Sources, 190, 322 (2009).CrossRefGoogle Scholar
  39. (39).
    Q. Yin, K.-N. Sun, A.-J. Li, L. Shao, S.-M. Liu, and C. Sun, J. Power Sources, 175, 861 (2008).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Ho-Joon Park
    • 1
  • Jong Seok Woo
    • 2
  • Sang Ha Kim
    • 1
  • Kwang Sang Park
    • 2
  • Sung Hoon Park
    • 2
  • Soo-Young Park
    • 1
    Email author
  1. 1.Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical EngineeringKyungpook UniversityDaeguKorea
  2. 2.Advanced Center of EngineeringMorgan Advanced MaterialsDaeguKorea

Personalised recommendations