Facile and Affordable Process to Control Shell Thickness of Polydopamine-Assisted Polystyrene/Silver Core-Shell Particles

  • Jun Young Kim
  • Sung Ho Choi
  • Ji Hun An
  • Seong Jae LeeEmail author


We prepared polystyrene (PS)/silver (Ag) core-shell particles with an excellent electrical conductivity in a facile, affordable and eco-friendly way. As core particles, monodisperse PS particles were synthesized by the process of dispersion polymerization. Then, the PS particles were coated with polydopamine (PDA) through the spontaneous oxidative polymerization of dopamine to produce PDA-coated PS particles. In essence, it is noted that the catechol and amine groups of PDA coated on PS particles can weakly reduce metallic ions. As a secondary reducing agent with an affordable price, glucose was therefore added to promote the reduction of metallic ions. Herein, the effect of glucose concentration on the Ag shell thickness of PDAassisted PS/Ag core-shell particles was investigated. The degree of Ag reduction increased with an increase characteristically in glucose concentration, resulting in the increase of Ag shell thickness. Notably, a thick and uniform Ag shell layer could be plated on PDA-coated PS particles, which were noted to have rendered excellent electrical conductivity. When the glucose concentration of 55 mM was applied, the electrical conductivity of the PS/Ag core-shell particles reached as high as 7.8×105 S/m, which was almost close to that of conductive metals.


polystyrene polydopamine glucose core-shell particle electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the University of Suwon, 2017.


  1. (1).
    S. Phadtare, A. Kumar, V. P. Vinod, C. Dash, D. V. Palaskar, M. Rao, P. G. Shukla, S. Sivaram, and M. Sastry, Chem. Mater., 15, 1944 (2003).CrossRefGoogle Scholar
  2. (2).
    N. A. Ogurtsov, V. N. Bliznyuk, A. V. Mamykin, O. L. Kukla, Y. P. Piryatinski, and A. A. Pud, Phys. Chem. Chem. Phys., 20, 6450 (2018).CrossRefGoogle Scholar
  3. (3).
    G. Oldfield, T. Ung, and P. Mulvaney, Adv. Mater., 12, 1519 (2000).CrossRefGoogle Scholar
  4. (4).
    C. H. Song, Y. Kim, B. K. Ju, and J. W. Kim, Mater. Design, 89, 1278 (2016).CrossRefGoogle Scholar
  5. (5).
    B. Karthikeyan, M. Anija, and R. Philip, Appl. Phys. Lett., 88, 053104 (2006).CrossRefGoogle Scholar
  6. (6).
    F. Caruso, M. Spasova, A. Susha, M. Giersig, and R. A. Caruso, Chem. Mater., 13, 109 (2001).CrossRefGoogle Scholar
  7. (7).
    S. Beckford, L. Mathurin, J. Chen, and M. Zou, Tribol. Lett., 59, 11 (2015).CrossRefGoogle Scholar
  8. (8).
    W. Wang, Y. Jiang, S. Wen, L. Liu, and L. Zhang, J. Colloid Interface Sci., 368, 241 (2012).CrossRefGoogle Scholar
  9. (9).
    H. Guo, Z. Qin, J. Wei, and C. Qin, Surf. Coat. Tech., 200, 2531 (2005).CrossRefGoogle Scholar
  10. (10).
    D. Chen, H. Y. Liu, J. S. Liu, X. L. Ren, X. W. Meng, W. Wu, and F. Q. Tang, Thin Solid Films, 516, 6371 (2008).CrossRefGoogle Scholar
  11. (11).
    I. Motizuki, K. Izawa, J. Watanabe, and H. Honma, Trans. IMF, 77, 41 (1999).CrossRefGoogle Scholar
  12. (12).
    Y. Kobayashi, V. Salgueirino-Maceira, and L. Liz-Marzan, Chem. Mater., 13, 1630 (2001).CrossRefGoogle Scholar
  13. (13).
    B. C. Kim, J. H. Park, and S. J. Lee, Polym. Korea, 34, 25 (2010).CrossRefGoogle Scholar
  14. (14).
    H. Luo, C. Gu, W. Zheng, F. Dai, X. Wang, and Z. Zheng, RSC Adv., 5, 13470 (2015).CrossRefGoogle Scholar
  15. (15).
    Y. Jiang, Y. Lu, L. Zhang, L. Liu, Y. Dai, and W. Wang, J. Nanopart. Res., 14, 938 (2012).CrossRefGoogle Scholar
  16. (16).
    J. Manokaran, R. Muruganantham, A. Muthukrishnaraj, and N. Balasubramanian, Electrochim. Acta, 168, 16 (2015).CrossRefGoogle Scholar
  17. (17).
    Y. Yan, Z. Zheng, C. Deng, Y. Li, X. Zhang, and P. Yang, Anal. Chem., 85, 8483 (2013).CrossRefGoogle Scholar
  18. (18).
    Y. Song, H. Jiang, B. Wang, Y. Kong, and J. Chen, ACS Appl. Mater. Interfaces, 10, 1792 (2018).CrossRefGoogle Scholar
  19. (19).
    L. Guo, Q. Liu, G. Li, J. Shi, J. Liu, T. Wang, and G. Jiang, Nanoscale, 4, 5864 (2012).CrossRefGoogle Scholar
  20. (20).
    Q. Chen, G. Liu, G. Chen, T. Mi, and J. Tai, BioResources, 12, 608 (2017).Google Scholar
  21. (21).
    F. Tavakoli, M. Salavati-Niasari, D. Ghanbari, K. Saberyan, and S. M. Hosseinpour-Mashkani, Mater. Res. Bull., 49, 14 (2014).CrossRefGoogle Scholar
  22. (22).
    D. Chunfa, Z. Xianglin, C. Hao, and C. Chuanliang, Rare Metal Mater. Eng., 45, 0261 (2016).CrossRefGoogle Scholar
  23. (23).
    M. Darroudi, M. B. Ahmad, A. H. Abdullah, N. A. Ibrahim, and K. Shameli, Int. J. Mol. Sci., 11, 3898 (2010).CrossRefGoogle Scholar
  24. (24).
    E. Susilowati, Triyono, S. J. Santosa, and I. Kartini, Indones. J. Chem., 15, 29 (2015).CrossRefGoogle Scholar
  25. (25).
    J. Y. Lee, J. W. Hwang, H. W. Jung, S. H. Kim, S. J. Lee, K. Yoon, and D. A. Weitz, Langmuir, 29, 861 (2013).CrossRefGoogle Scholar
  26. (26).
    Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng, D. Guo, and Z. Deng, J. Mater. Chem. B, 2, 3450 (2014).CrossRefGoogle Scholar
  27. (27).
    H. Kim, K. H. Ahn, and S. J. Lee, Polymer, 110, 187 (2017).CrossRefGoogle Scholar
  28. (28).
    Y. Singh, Int. J. Mod. Phys.: Conf. Ser., 22, 745 (2013).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Jun Young Kim
    • 1
  • Sung Ho Choi
    • 1
  • Ji Hun An
    • 1
  • Seong Jae Lee
    • 1
    Email author
  1. 1.Department of Polymer EngineeringThe University of SuwonHwaseong, GyeonggiKorea

Personalised recommendations