Magnetic Molecularly Imprinted Polymer Particles Based Micro-Solid Phase Extraction for the Determination of 4-Nitrophenol in Lake Water

  • Aziguli Yigaimu
  • Turghun MuhammadEmail author
  • Wenwu Yang
  • Imran Muhammad
  • Muyasier Wubulikasimu
  • Sergey A. Piletsky


In this work, magnetic molecularly imprinted polymers (MMIPs) were prepared by the method of co-precipitation polymerization on the surface of vinyl-modified silica magnetic particles. Here, 4-nitrophenol (4-NP) was used as a template and vinylimidazole as a functional monomer. The structural features and morphology of MMIPs were characterized by SEM, FT-IR, TEM and XRD techniques. The results showed that the structures of MMIPs have a layer of silica and MIPs on the surface of the Fe3O4 particles, and they could be rapidly separated from the solution using a magnet. MMIPs possess higher adsorption capacity and excellent selectivity towards template (4-NP) than other structural analogues. And it is found to have good imprinting effect. MMIPs were used as micro-solid phase extraction sorbent for selective separation of 4-NP in lake water sample with high recoveries (90.63–95.63%) and low relative standard deviation values (RSD ≤ 3.2%, n = 3).


molecularly imprinted polymers magnetic separation micro-solid phase extraction 4-nitrophenol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. (1).
    P. P. Zhang, Z. G. Shi, and Y. Q. Feng, Talanta, 85, 2581 (2011).CrossRefGoogle Scholar
  2. (2).
    G. Xiao, Y. Zhao, L. Li, J. Pratt, H. Su, and T. Tan, Nanotechnology, 29, 155601 (2018).CrossRefGoogle Scholar
  3. (3).
    R. Belloli, B. Barletta, E. Bolzacchini, S. Meinardi, M. Orlandi, B. Rindone, J. Chromatogr. A, 846, 277 (1999).CrossRefGoogle Scholar
  4. (4).
    W. W. Eckenfelder, Am. J. Water Resour. As, 5, 73 (2007).Google Scholar
  5. (5).
    E. Suja, Y. V. Nancharaiah, and V. P. Venugopalan, Appl. Biochem. Biotechnol., 167, 1569 (2012).CrossRefGoogle Scholar
  6. (6).
    G. J. Paul, Y. K. Bhardwaj, and L. Varshney, J. Appl. Polym. Sci., 135, 46200 (2018).CrossRefGoogle Scholar
  7. (7).
    G. Xue, M. Gao, Z. Gu, Z. Luo, and Z. Hu, Chem. Eng. J., 218, 223 (2013).CrossRefGoogle Scholar
  8. (8).
    G. Eichenbaum, M. Johnson, D. Kirkland, P. O’Neill, S. Stellar, J. Bielawne, R. Dewire, D. Areia, S. Bryant, and S. Weiner, Regul. Toxicol. Pharm., 55, 33 (2009).CrossRefGoogle Scholar
  9. (9).
    J. Li, Q. Liu, Q. Q. Ji, and B. Lai, Appl. Catal. B-Environ., 200, 633 (2017).CrossRefGoogle Scholar
  10. (10).
    Z. Liu, C. Yang, and C. Qiao, Fems. Microbiol. Lett, 277, 150 (2007).CrossRefGoogle Scholar
  11. (11).
    X. Guo, Z. Wang, and S. Zhou, Talanta, 64, 135 (2004).CrossRefGoogle Scholar
  12. (12).
    A. Almási, E. Fischer, and P. Perjési, J. Biochem. Biophys. Met., 69, 43 (2006).CrossRefGoogle Scholar
  13. (13).
    W. Zhang, C. R. Wilson, and N. D. Danielson, Talanta, 74, 1400 (2008).CrossRefGoogle Scholar
  14. (14).
    C. Zhang, S. Govindaraju, K. Giribabu, S. H. Yun, and K. Yun, Sensor Actuat. B-Chem., 252, 616 (2017).CrossRefGoogle Scholar
  15. (15).
    W. K. Meng, L. Liu, X. Wang, R. S. Zhao, M. L. Wang, and J. Lin, Anal. Chim. Acta, 1015, 27 (2018).CrossRefGoogle Scholar
  16. (16).
    A. Machyňáková and K. Hroboňová, Chromatographia, 80, 1015 (2017).CrossRefGoogle Scholar
  17. (17).
    A. Machyňáková and K. Hroboňová, J. Architec. Plan., 64, 107 (1999).Google Scholar
  18. (18).
    X. Y. Xu, P. Q. Guo, Z. M. Luo, Y. H. Ge, Y. L. Zhou, R. M. Chang, W. Du, C. Chang, and Q. Fu, RSC Adv., 7, 18765 (2017).CrossRefGoogle Scholar
  19. (19).
    R. T. Ma and Y. P. Shi, Talanta, 134, 650 (2015).CrossRefGoogle Scholar
  20. (20).
    A. Mehdinia, K. T. Baradaran, A. Jabbari, M. O. Aziz-Zanjani, and E. Ziaei, J. Chromatogr. A, 1283, 82 (2013).CrossRefGoogle Scholar
  21. (21).
    Y. Zhao, C. Bi, X. He, L. Chen, and Y. Zhang, RSC Adv., 5, 70309 (2015).CrossRefGoogle Scholar
  22. (22).
    J. Huang, H. Q. Liu, H. F. Men, Y. Y. Zhai, Q. H. Xi, Z. L. Zhang, J. Zhang, Z. Z. Yin, and L. Li, Macromol. Res., 21, 1021 (2013).CrossRefGoogle Scholar
  23. (23).
    Z. Z. Lin, H. Y. Zhang, A. H. Peng, Y. D. Lin, L. Li, and Z. Y. Huang, Food Chem., 200, 32 (2016).CrossRefGoogle Scholar
  24. (24).
    S. S. Miao, M. S. Wu, H. G. Zuo, C. Jiang, S. F. Jin, Y. C. Lu, and H. Yang, J. Agric. Food Chem., 63, 3634 (2015).CrossRefGoogle Scholar
  25. (25).
    J. Wu, Z. Yang, N. Chen, W. Zhu, J. Hong, C. Huang, and X. Zhou, J. Colloid Interface Sci., 442, 22 (2015).CrossRefGoogle Scholar
  26. (26).
    L. Wang, F. Qiu, J. Li, and J. Pan, Analytical Methods, 9, 6839 (2017).CrossRefGoogle Scholar
  27. (27).
    A. Mehdinia, F. Roohi, and A. Jabbari, J. Chromatogr. A, 1218, 4269 (2011).CrossRefGoogle Scholar
  28. (28).
    P. J. Cregg, K. Murphy, A. Mardinoglu, J. Magn. Mater., 321, 3893 (2009).CrossRefGoogle Scholar
  29. (29).
    U. Laska, C. G. Frost, P. K. Plucinski, and G. J. Price, Catal. Lett., 122, 68 (2008).CrossRefGoogle Scholar
  30. (30).
    L. Chen and B. Li, Analytical Methods, 4, 2613 (2012).CrossRefGoogle Scholar
  31. (31).
    M. Kipayem, M. Turghun, T. Yunusjan, and Y. Burabiye, Chin. J. Appl. Chem., 31, 482 (2014).Google Scholar
  32. (32).
    D. L. Giokas, Q. Zhu, Q. Pan, and A. Chisvert, J. Chromatogr. A, 1251, 33 (2012).CrossRefGoogle Scholar
  33. (33).
    T. Khezeli and A. Daneshfar, J. Sep. Sci., 38, 2804 (2015).CrossRefGoogle Scholar
  34. (34).
    D. He, X. Zhang, B. Gao, L. Wang, Q. Zhao, H. Chen, H. Wang, and C. Zhao, Food Control, 36, 36 (2014).CrossRefGoogle Scholar
  35. (35).
    L. Dong, H. Peng, S. Wang, Z. Zhang, J. Li, F. Ai, Q. Zhao, M. Luo, H. Xiong, and L. Chen, J. Appl. Polym. Sci., 131, 178 (2014).Google Scholar
  36. (36).
    D. Gao, D. D. Wang, Q. F. Fu, L. J. Wang, K. L. Zhang, F. Q. Yang, and Z. N. Xia, Talanta, 178, 299 (2018).CrossRefGoogle Scholar
  37. (37).
    S. Xu, J. Li, and L. Chen, J. Mater. Chem, 21, 4346 (2011).CrossRefGoogle Scholar
  38. (38).
    J. A. García-Calzón and M. E. Díaz-García, Sensor Actuat. B-Chem., 123, 1180 (2007).CrossRefGoogle Scholar
  39. (39).
    X. P. He, Z. R. Lian, L. J. Tan, and J. T. Wang, J. Chromatogr. A, 1469, 8 (2016).CrossRefGoogle Scholar
  40. (40).
    M. Garcia-Fernandez, M. Diaz-Alvarez, and A. Martin-Esteban, J. Sep. Sci., 40, 2638 (2017).CrossRefGoogle Scholar
  41. (41).
    F. Ning, H. Peng, L. Dong, Z. Zhang, J. Li, L. Chen, and H. Xiong, J. Agric. Food Chem., 6, 11138 (2014).CrossRefGoogle Scholar
  42. (42).
    W. Lu, X. Wang, X. Wu, D. Liu, J. Li, L. Chen, and X. Zhang, J. Chromatogr. A, 1483, 30 (2017).CrossRefGoogle Scholar
  43. (43).
    M. Atakay, O. Celikbicak, and B. Salih, Anal. Chem., 84, 2713 (2012).CrossRefGoogle Scholar
  44. (44).
    X. You and L. Chen, Analytical Methods, 8, 1003 (2016).CrossRefGoogle Scholar
  45. (45).
    J. Ashley, K. Wu, M. F. Hansen, M. S. Schmidt, A. Boisen, and Y. Sun, Anal. Chem., 89, 11484 (2017).CrossRefGoogle Scholar
  46. (46).
    F. Lu, M. Sun, L. Fan, H. Qiu, X. Li, and C. Luo, Sensor Actuat. B-Chem., 173, 591 (2012).CrossRefGoogle Scholar
  47. (47).
    M. Yan, Z. Qing, M. L. Ai, D. S. Chen, Q. S. Qian, and C. Z. Man, J. Hazard. Mater., 266, 84 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Aziguli Yigaimu
    • 1
  • Turghun Muhammad
    • 1
    • 2
    Email author
  • Wenwu Yang
    • 1
  • Imran Muhammad
    • 1
  • Muyasier Wubulikasimu
    • 1
  • Sergey A. Piletsky
    • 3
  1. 1.College of Chemistry & Chemical EngineeringXinjiang University, Xinjiang Key laboratory of Oil and Gas Fine ChemicalsUrumqiP. R. China
  2. 2.State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianP. R. China
  3. 3.University of Leicester, Department of ChemistryLeicesterUK

Personalised recommendations