Advertisement

Macromolecular Research

, Volume 27, Issue 7, pp 729–737 | Cite as

Effects of Macromonomeric Length of Ureidopyrimidinone-Induced Supramolecular Polymers on Their Crystalline Structure and Mechanical/Rheological Properties

  • Soon Ho Jang
  • Junhaeng Lee
  • Jae Woo ChungEmail author
  • Seong Hun KimEmail author
Article
  • 36 Downloads

Abstract

To investigate the effect of the macromonomeric length of ureidopyrimidinone-based supramolecular polymers on their crystalline structure and mechanical/rheological properties, we synthesized ureidopyrimidinone-end functional poly(tetramethylene glycol), U(PTMG), with varied molecular weight (1k, 2k, and 3k g·mol−1). From 1H NMR, FT-IR, and specific viscosity analysis, we confirmed chain extension of U(PTMG)s by the quadruple hydrogen bonding of ureidopyrimidinone, indicating successful formation of U(PTMG) supramolecular polymers. We found that the U(PTMG) supramolecular polymers had dual-crystalline structures composed of PTMG and UPy crystals. The rigid UPy crystals, which had relatively high melting temperatures, were dominant with decreasing macromonomeric lengths of the U(PTMG) supramolecular polymers, whereas the chain-folded PTMG crystals were drastically reduced. As a result, the mechanical and rheological properties of the U(PTMG) supramolecular polymers became rigid and elastic, with decreasing macromonomer lengths of the U(PTMG) supramolecular polymers, due to their increased portions of UPy crystals.

Keywords

dual-crystalline structures hydrogen bonding poly(tetramethylene glycol) supramolecular polymers ureidopyrimidinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7149_MOESM1_ESM.pdf (295 kb)
Supporting Information

References

  1. (1).
    L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, Chem. Rev., 101, 4071 (2001).CrossRefGoogle Scholar
  2. (2).
    H. M. Keizer, R. P. Sijbesma, and E. W. Meijer, Eur. J. Org. Chem., 2004, 2553 (2004).CrossRefGoogle Scholar
  3. (3).
    H. Sylvia, L. Ludwik, I. Llias, and P. Julie, EP 2638075 B1 (2017).Google Scholar
  4. (4).
    R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, and J. Shen, Adv. Mater., 27, 498 (2015).CrossRefGoogle Scholar
  5. (5).
    A. Jangizehi, S. R. Ghaffarian, E. Kowsari, and R. Nasseri, J. Macromol. Sci. Part B, 53, 848 (2014).CrossRefGoogle Scholar
  6. (6).
    M. W. Urban, Prog. Polym. Sci., 34, 679 (2009).CrossRefGoogle Scholar
  7. (7).
    G. M. L. van Gemert, J. W. Peeters, S. H. M. Söntjens, H. M. Janssen, and A. W. Bosman, Macromol. Chem. Phys., 213, 234 (2012).CrossRefGoogle Scholar
  8. (8).
    F. Herbst, D. Döhler, P. Michael, and W. H. Binder, Macromol. Rapid Commun., 34, 203 (2013).CrossRefGoogle Scholar
  9. (9).
    A. Campanella, D. Döhler, and W. H. Binder, Macromol. Rapid Commun., 39, 1700739 (2018).CrossRefGoogle Scholar
  10. (10).
    T. Aida, E. W. Meijer, and S. I. Stupp, Science, 335, 813 (2012).CrossRefGoogle Scholar
  11. (11).
    A. B. Atar, J. Y. Jeong, N. Kim, and J. S. Park, Macromol. Res., 26, 814 (2018).CrossRefGoogle Scholar
  12. (12).
    B. C-K. Tee, C. Wang, R. Allen, and Z. Bao, Nat. Nanotechnol., 7, 825 (2012).CrossRefGoogle Scholar
  13. (13).
    T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, Chem. Rev., 109, 5687 (2009).CrossRefGoogle Scholar
  14. (14).
    L. Yang, X. Tan, Z. Wang, and X. Zhang, Chem. Rev., 115, 7196 (2015).CrossRefGoogle Scholar
  15. (15).
    R. P. Sijbesma and E. W. Meijer, Curr. Opin. Colloid Interface Sci., 4, 24 (1999).CrossRefGoogle Scholar
  16. (16).
    H. M. Keizer, R. van Kessel, R. P. Sijbesma, and E. W. Meijer, Polymer, 44, 5505 (2003).CrossRefGoogle Scholar
  17. (17).
    R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J. H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe, and E. W. Meijer, Science, 278, 1601 (1997).CrossRefGoogle Scholar
  18. (18).
    S. H. M. Söntjens, R. P. Sijbesma, M. H. P. van Genderen, and E. W. Meijer, J. Am. Chem. Soc., 122, 7487 (2000).CrossRefGoogle Scholar
  19. (19).
    H. Kautz, D. J. M. van Beek, R. P. Sijbesma, and E. W. Meijer, Macromolecules, 39, 4265 (2006).CrossRefGoogle Scholar
  20. (20).
    J. H. K. K. Hirschberg, F. H. Beijer, H. A. van Aert, P. C. M. M. Magusin, R. P. Sijbesma, and E. W. Meijer, Macromolecules, 32, 2696 (1999).CrossRefGoogle Scholar
  21. (21).
    B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. van der Rijt, and E. W. Meijer, Adv. Mater., 12, 874 (2000).CrossRefGoogle Scholar
  22. (22).
    A. Bertrand, F. Lortie, and J. Bernard, Macromol. Rapid Commun., 33, 2062 (2012).CrossRefGoogle Scholar
  23. (23).
    J.-L. Wietor, D. J. M. van Beek, G. W. Peters, E. Mendes, and R. P. Sijbesma, Macromolecules, 44, 1211 (2011).CrossRefGoogle Scholar
  24. (24).
    S. K. Yang, A. V. Ambade, and M. Weck, Chem. Soc. Rev., 40, 129 (2011).CrossRefGoogle Scholar
  25. (25).
    K. Cao and G. Liu, Macromolecules, 50, 2016 (2017).CrossRefGoogle Scholar
  26. (26).
    S. Nojiri, H. Yamada, S. Kimata, K. Ikeda, T. Senda, and A. W. Bosman, Polymer, 87, 308 (2016).CrossRefGoogle Scholar
  27. (27).
    A. T. T. Cate, H. Kooijman, A. L. Spek, R. P. Sijbesma, and E. W. Meijer, J. Am. Chem. Soc., 126, 3801 (2004).CrossRefGoogle Scholar
  28. (28).
    D. J. M. van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, Macromolecules, 40, 8464 (2007).CrossRefGoogle Scholar
  29. (29).
    N. E. Botterhuis, D. J. M. van Beek, G. M. L. van Gemert, A. W. Bosman, and R. P. Sijbesma, J. Polym. Sci.: Part A: Polym. Chem., 46, 3877 (2008).CrossRefGoogle Scholar
  30. (30).
    M. M. L. Nieuwenhuizen, T. F. A. de Greef, R. L. J. van der Bruggen, J. M. J. Paulusse, W. P. J. Appel, M. M. J. Smulders, R. P. Sijbesma, and E. W. Meijer, Chem. Eur. J., 16, 1601 (2010).CrossRefGoogle Scholar
  31. (31).
    W. P. J. Appel, G. Portale, E. Wisse, P. Y. W. Dankers, and E. W. Meijer, Macromolecules, 44, 6776 (2011).CrossRefGoogle Scholar
  32. (32).
    W. Zhou, Y. Zhang, Y. Xu, P. Wang, L. Gao, W. Zhang, and J. Ji, Polym. Degrad. Stab., 109, 21 (2014).CrossRefGoogle Scholar
  33. (33).
    S.-Y. Ryu, J. W. Chung, and S.-Y. Kwak, Langmuir, 31, 9473 (2015).CrossRefGoogle Scholar
  34. (34).
    J. W. Chung, K. S. Oh, and S.-Y. Kwak, Macromol. Mater. Eng., 292, 627 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea
  2. 2.Korea Textile Development InstituteDaeguKorea
  3. 3.Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil UniversitySeoulKorea
  4. 4.Department of Organic Materials and Fiber EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations