Advertisement

Biopeptide Hyperbranched Polyether Assembled from Lactic Acid, Glutamic Acid and Polyethylene Glycol Block Chains for Drug Loading

  • Linya ZhangEmail author
  • Wei Xue
  • Limin Gu
Article
  • 1 Downloads

Abstract

A drug loading system based on biopeptide hyperbranched polyether (BHPE) had been prepared. The biopeptide hyperbranched polymer (BHP) was composed of trimellitic anhydride, lactic acid and glutamic acid chains. The BHPE was assembled by the BHP and polyethylene glycol 400 (PEG400). The effects of pH, mass ratio of BHP and PEG400 and reaction time on particle size and distribution were studied. When the pH was 7, the mass ratio of BHP and PEG400 was 1:4 and the reaction time was 1.5 h, the BHPE formed the appropriate hollow vesicle structure which the particle size was smaller and particle size distribution was better. Also the sample of BHPE exhibited the excellent performances on swelling and in vitro degradation. The salicylic acid (SA) was used as drug model and the properties of SA-loaded BHPE system were tested by LPSA, UV-Vis and TEM. The SA-loaded BHPE system possessed obvious core-skin structure, and it demonstrated good in vitro released performance.

Keywords

biopeptide hyperbranched polyether drug loading salicylic acid prepare release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Medel, E. Martínez-Campos, D. Acitores, E. Vassileva-Tonkova, I. Grabchev, and P. Bosch, Eur. Polym. J, 102, 19 (2018).CrossRefGoogle Scholar
  2. (2).
    H. S. Alaei, M. S. Tehrani, S. W. Husain, H. A. Panahi, and A. Mehramizi, Polymer, 148, 191 (2018).CrossRefGoogle Scholar
  3. (3).
    A. D. Nicolò, D. Agnesod, M. Simiele, D. Riganò, A. Adriani, R. Canaparo, M. Astegiano, M. Rizzetto, and A. D’Avolio, J. Pharmaceut Biomed., 98, 271 (2014).CrossRefGoogle Scholar
  4. (4).
    Y. Xia, X. Wang, and Y. Wang, Polym. Chem., 12, 3763 (2014).CrossRefGoogle Scholar
  5. (5).
    X. Wu, H. Li, B. Xu, H. Tong, and L. Wang, Polym. Chem., 15, 4521 (2014).CrossRefGoogle Scholar
  6. (6).
    D. Wang, T. Zhao, X. Zhu, D. Yan, and W. Wang, Chem. Soc. Rev., 44, 4023 (2015).CrossRefGoogle Scholar
  7. (7).
    S. Medel, P. Bosch, C. de la Torre, and P. Ramirez, Eur. Polym. J., 59, 290 (2014).CrossRefGoogle Scholar
  8. (8).
    K. G. Priyanka, A. K. Mishra, S. Kantheti, R Narayan, and K. V. S. N. Raju, J. Appl. Polym. Sci., 126, 2024 (2012).CrossRefGoogle Scholar
  9. (9).
    C. Gao and D. Yan, Prog. Polym. Sci., 29, 183 (2004).CrossRefGoogle Scholar
  10. (10).
    P. Mitra, B. Chakraborty, D. Bhattacharyya, and S. Basu, J. Phys. Chem. A., 117, 1428 (2013).CrossRefGoogle Scholar
  11. (11).
    Y. Zheng, C. D. Fahrenholtz, C. L. Hackett, S. Ding, C. S. Day, R. Dhall, G. S. Marrs, M. D. Gross, R. Singh, and U. Bierbach, Chem-Eur. J., 23, 3386 (2017).CrossRefGoogle Scholar
  12. (12).
    M. A. Sani, F. Ding, A. Kakinen, I. Javed, F. Separovic, T. P. Davis, and R. Mezzenga, Chem. Soc. Rev., 46, 6492 (2017).CrossRefGoogle Scholar
  13. (13).
    M. J. Hajipour, M. R. Santoso, F. Rezaee, H. Aghaverdi, M. Mahmoudi, and G. Perry, Trends Biotechnol., 39, 937 (2017).CrossRefGoogle Scholar
  14. (14).
    A. Verma, O. Uzun, Y. Hu, Y. Hu, H. S. Han, N. Watson, S. Chen, D. J. Irvine, and F. Stellacci, Nat. Mater., 7, 588 (2008).CrossRefGoogle Scholar
  15. (15).
    D. Chopra, M. Gulati, V. Saluja, P. Pathak, and P. Bansal, Recent Pat. CNS Drug Discov., 3, 216 (2008).CrossRefGoogle Scholar
  16. (16).
    W. Dong, Y. Zhou, D. Yan, H. Li, and Y. Liu, Phys. Chem. Chem. Phys., 9, 1255 (2007).CrossRefGoogle Scholar
  17. (17).
    F. H. Meng, C. Hiemstra, G. H. M. Engbers, and F. J. Jan, Macromolecules, 36, 3004 (2003).CrossRefGoogle Scholar
  18. (18).
    D. Patel, B. D. McKinley, T. P. Davis, F. Porreca, H. I. Yamamura, and V. J. Hruby, Bioconjugate Chem., 8, 434 (1997).CrossRefGoogle Scholar
  19. (19).
    Y. Xia, X. Wang, and Y. Wang, Polym. Chem., 5, 3763 (2014).CrossRefGoogle Scholar
  20. (20).
    C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello, Bioconjugate Chem., 15, 897 (2004).CrossRefGoogle Scholar
  21. (21).
    S. Pedron, C. Peinado, P. Bosch, J. A. Benton, and K. S. Anseth, J. Biomed. Mater. Res. A, 96, 196 (2011).CrossRefGoogle Scholar
  22. (22).
    S. Medel, P. Bosch, L. Grabchev, M. C. Torre, and P. Ramírez, Eur. Polym. J., 74, 241 (2016).CrossRefGoogle Scholar
  23. (23).
    D. Wang, T. Zhao, X. Zhu, D. Yan, and W. Wang, Chem. Soc. Rev., 44, 4023 (2015).CrossRefGoogle Scholar
  24. (24).
    H. B. Jin, W. Huang, X. Y. Zhu, Y. F. Zhou, and D. Y. Yan, Chem. Soc. Rev., 41, 5986 (2012).CrossRefGoogle Scholar
  25. (25).
    Y. F. Zhou, W. Huang, J. Y. Liu, X. Y. Zhu, and D. Yan, Adv. Mater., 22, 4567 (2010).CrossRefGoogle Scholar
  26. (26).
    R. J. Dong, B. S. Zhu, Y. F. Zhou, and D. Yan, Angew. Chem. Int. Ed., 51, 11633 (2012).CrossRefGoogle Scholar
  27. (27).
    X. F. Ji, S. Y. Dong, and P. F. Wei, Adv. Mater., 25, 5725 (2013).CrossRefGoogle Scholar
  28. (28).
    L. Yua, W. L. Che, and J. Li, J. Polym. Sci. Pol. Chem., 50, 4579 (2012).CrossRefGoogle Scholar
  29. (29).
    P. F. Gou, W. P. Zhu, and Z. Q. Shen, Biomacromolecules, 11, 934 (2010).CrossRefGoogle Scholar
  30. (30).
    S. Venkataraman, A. L. Lee, H. T. Maune, J. L. Hedrick, V. M. Prabhu, and Y. Y. Yang, Macromolecules, 46, 4839 (2013).CrossRefGoogle Scholar
  31. (31).
    B. Surnar and M. Jayakannan, Biomacromolecules, 14, 4377 (2013).CrossRefGoogle Scholar
  32. (32).
    D. Y. Chen, Z. T. Luo, and N. J. Li, Adv. Funct. Mater., 23, 4324 (2013).CrossRefGoogle Scholar
  33. (33).
    L. Glavas, P. Olsén, and K. Odelius, Biomacromolecules, 14, 4150 (2013).CrossRefGoogle Scholar
  34. (34).
    Y. S. Velichko, S. I. Stupp, and M. O. de la Cruz, J. Phys. Chem. B, 112, 2326 (2008).CrossRefGoogle Scholar
  35. (35).
    H. G. Cui, M. J. Webber, S. I. Stupp, and M. O. de la Cruz, Biopolymers, 94, 1 (2010).CrossRefGoogle Scholar
  36. (36).
    J. C. S. Stendahl, M. O. Guler, and S. I. Stupp, Adv. Funct. Mater., 16, 499 (2006).CrossRefGoogle Scholar
  37. (37).
    E. D. Sone and S. I. Stupp, Chem. Mater., 23, 2005 (2011).CrossRefGoogle Scholar
  38. (38).
    T. Muraoka, H. Cui, and S. I. Stupp, J. Am. Chem. Soc., 130, 2946 (2008).CrossRefGoogle Scholar
  39. (39).
    D. H. Kim and D. C. Martin, Biomaterials, 27, 3031 (2006).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangP. R. China

Personalised recommendations