Synthesis and Functionalization of Ynone-Based Tubular Microporous Polymer Networks and Their Carbonized Products for CO2 Capture

  • Jeongmin Lee
  • Ji Young ChangEmail author


Ynone-based microporous polymer networks (YMPNs) were synthesized by the reaction of aromatic dicarboxylic acid chloride and alkyne groups under Sono-gashira cross-coupling reaction conditions. As the reaction proceeded in a mixture of toluene and triethylamine (TEA), tubular precipitates formed rapidly. The microscopic and XRD studies showed thatthe precipitates had a core-shell structure with a rod-shaped triethylammonium chloride (TEA-HC1) crystalline core and a polymeric shell. The core was removed by washing with methanol to provide a hollow polymeric tube. The TEA-HC1 rod formed in situ during the cross-coupling reaction and served as a template in forming the tubular morphology. YMPNs could be modified with ease because of the presence of highly reactive ynone groups. YMPNs were functionalized with ethylenediamine by the Michael-type addition reaction. The amino group functionalized YMPNs were used as precursors of nitrogen-doped porous carbons. The pyrolysis of the polymers at 800 °C produced microporous carbon materials withoutthe activation process. The carbon materials showed significantly enhanced Brunauer-Emmett-Teller (BET) surface areas and CO2 uptake capacities compared to their precursor polymers.


microporous polymer network ynone pyrolysis porous carbon CO2 adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01006585).

Supplementary material

13233_2019_7145_MOESM1_ESM.pdf (2.1 mb)
Supplementary material, approximately 2.10 MB.


  1. (1).
    R. Dawson, D. J. Adams, and A. I. Cooper, Chem. Sci., 2, 1173 (2011).CrossRefGoogle Scholar
  2. (2).
    S. Kim and Y. M. Lee, Prog. Polym. Sci., 43, 1 (2015).CrossRefGoogle Scholar
  3. (3).
    Y. Xie, T. T. Wang, X. H. Liu, K. Zou and W. Q. Deng, Nat Commun., 4, 1960 (2013).CrossRefGoogle Scholar
  4. (4).
    Z.-D. Ding W. Zhu, T. Li, R. Shen, Y. Li, Z. Li, X. Ren and Z.-G. Gu, Dalt Trans., 46, 11372 (2017).CrossRefGoogle Scholar
  5. (5).
    J. G. Kim, J. Lee, J. Lee, S. I. Jo, and J. Y. Chang Macromol. Res., 25, 629 (2017).CrossRefGoogle Scholar
  6. (6).
    S. Ren, R. Dawson, D. J. Adams, and A. I. Cooper, Polym. Chem., 4, 5585 (2013).CrossRefGoogle Scholar
  7. (7).
    B. Bonillo, R. S. Sprickand A. I. Cooper, Chem. Mater, 28, 3469 (2016).CrossRefGoogle Scholar
  8. (8).
    Z. Xiao, M. Zhang W. Fan, Y. Qian, Z. Yang, B. Xu, Z. Kang, R. Wang and D. Sun, Chem. Eng. J., 326, 640 (2017).CrossRefGoogle Scholar
  9. (9).
    L. Cai, Y. Li, Y. Li, H. Wang Y. Yu, Y. Liu, and Q. Duan, J. Hazard. Mater, 348, 47 (2018).CrossRefGoogle Scholar
  10. (10).
    A. S. Karpovand T. J. J. Muller, Synthesis, 5, 2815 (2003).Google Scholar
  11. (11).
    Z. Li, J. He, X. Chen, Y. Cheng and J. Yang Tetrahedron, 74, 6612 (2018).CrossRefGoogle Scholar
  12. (12).
    R. E. Whittaker, A. Dermenci, and G. Dong Synthesis, 48, 161 (2016).Google Scholar
  13. (13).
    H. Deng, R. Hu, A. C. S. Leung E. Zhao, J. W. Y. Lam, and B. Z. Tang Polym. Chem., 6, 4436 (2015).CrossRefGoogle Scholar
  14. (14).
    H. Deng Z. He, J. W. Y. Lam, and B. Z. Tang Polym. Chem., 6, 8297 (2015).CrossRefGoogle Scholar
  15. (15).
    C. Zheng, H. Deng, Z. Zhao, A. Qin, R. Hu, and B. Z. Tang Macromolecules, 48, 1941 (2015).CrossRefGoogle Scholar
  16. (16).
    X. Tang, C. Zheng Y. Chen, Z. Zhao, A. Qin, R. Hu, and B. Z. Tang Macro-molecules, 49, 9291 (2016).CrossRefGoogle Scholar
  17. (17).
    J. Choi, J. H. Ko, C. W. Kang, S. M. Lee, H. J. Kim, Y. J. Ko, M. Yang and S. U. Son, J. Mater. Chem. A, 6, 6233 (2018).CrossRefGoogle Scholar
  18. (18).
    M. H. Kim, J. Choi, K. C. Ko, K. Cho, J. H. Park, S. M. Lee, H. J. Kim, Y. J. Ko, J. Y. Lee, and S. U. Son, Chem. Commun., 54, 5134 (2018).CrossRefGoogle Scholar
  19. (19).
    A. Rehman and S. J. Park, Macromol. Res., 25, 1035 (2017).CrossRefGoogle Scholar
  20. (20).
    D. Kim, S. Yun, S. Chun, and J. Choi, Macromol. Res., 26, 317 (2018).CrossRefGoogle Scholar
  21. (21).
    H. Lim, M. C. Cha, and J. Y. Chang Macromol. Chem. Phys., 213, 1385 (2012).CrossRefGoogle Scholar
  22. (22).
    P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. Islamoglu, and H. M. El-Kaderi, Chem. Mater, 26, 1385 (2014).CrossRefGoogle Scholar
  23. (23).
    R. Dawson, E. Stöckel, J. R. Hoist, D. J. Adams, and A. I. Cooper, Energy Environ. Sci., 4, 4239 (2011).CrossRefGoogle Scholar
  24. (24).
    J. X. Jiang F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak, and A. I. Cooper, Angew. Chem. Int Ed., 46, 8574 (2007).CrossRefGoogle Scholar
  25. (25).
    R. J. Cox, D. J. Ritson, T. A. Dane, J. Berge, J. P. H. Charmant, and A. Kantacha, Chem. Commun., 1037 (2005).Google Scholar
  26. (26).
    S. Razzaque, C. Cai, Q. Lu, F. Huang, Y. Li, H. Tang I. Hussain, and B. Tan, J. Mater. Chem. B, 5, 742 (2017).CrossRefGoogle Scholar
  27. (27).
    B. Li, X. Yang L. Xia, M. I. Majeed, and B. Tan, Sci. Rep., 3, 1 (2013).Google Scholar
  28. (28).
    N. Kang J. H. Park, M. Jin, N. Park, S. M. Lee, H. J. Kim, J. M. Kim, and S. U. Son, J. Am. Chem. Soc. 135, 19115 (2013).CrossRefGoogle Scholar
  29. (29).
    Y. Lim, M. C. Cha, and J. Y. Chang Sci. Rep., 5, 15957 (2015).CrossRefGoogle Scholar
  30. (30).
    Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang A. Li, and W. Deng, J. Mater. Chem. A, 3, 87 (2015).CrossRefGoogle Scholar
  31. (31).
    J. Chun, J. H. Park, J. Kim, S. M. Lee, H. J. Kim, and S. U. Son, Chem. Mater, 24, 3458 (2012).CrossRefGoogle Scholar
  32. (32).
    J. Lee and J. Y. Chang RSC Adv, 8, 25277 (2018).CrossRefGoogle Scholar
  33. (33).
    T. E. Glotova, M. Y. Dvorko, I.A. Ushakov, N. N. Chipanina, O. N. Kazheva, A. N. Chekhlov, O. A. Dyachenko, N. K. Gusarova, and B. A. Trofimov, Tetrahedron, 65, 9814 (2009).CrossRefGoogle Scholar
  34. (34).
    W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, and H. C. Zhou, Chem. Mater., 26, 4589 (2014).CrossRefGoogle Scholar
  35. (35).
    B. Kiskan and J. Weber, ACS Macro Lett., 1, 37 (2012).CrossRefGoogle Scholar
  36. (36).
    S. Li, K. Han, J. Li, M. Li, and C. Lu, Micropor. Mesopor. Mater, 243, 291 (2017).CrossRefGoogle Scholar
  37. (37).
    P. Puthiaraj, Y. R. Lee, and W. S. Ahn, Chem. Eng. J., 319, 65 (2017).CrossRefGoogle Scholar
  38. (38).
    M. H. Nematollahi, A. H. S. Dehaghani, V. Pirouzfar, and E. Akhondi, Macromol Res., 24, 782 (2016).CrossRefGoogle Scholar
  39. (39).
    R. Bera, S. Mondal, and N. Das, Micropor. Mesopor. Mater, 257, 253 (2018).CrossRefGoogle Scholar
  40. (40).
    P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, and T. E. Mtiller, Energy Environ. Sci., 5, 7281 (2012).CrossRefGoogle Scholar
  41. (41).
    J. Kou and L.-B. Sun, J. Mater. Chem. A, 4, 17299 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, College of EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations