Advertisement

Macromolecular Research

, Volume 27, Issue 10, pp 1009–1023 | Cite as

Polymer Compositional Ratio-Dependent Morphology, Crystallinity, Dielectric Dispersion, Structural Dynamics, and Electrical Conductivity of PVDF/PEO Blend Films

  • Priyanka Dhatarwal
  • Ram Jeewan SengwaEmail author
Article

Abstract

The polymer blend (PB) films consisted of poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) with different compositional ratios (i.e., PVDF/PEO =100/0, 75/25, 50/50, 25/75, and 0/100 wt%) have been prepared by solution casting method. These PB films were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dielectric relaxation spectroscopy (DRS). The pristine films of PVDF and PEO have spherulite morphologies, which change enormously with the variation of their compositions in blend films. The EDX spectra confirm the linear variation of the amount of respective polymer elements, with the change of its compositional ratio in the PB films. The XRD and FTIR results confirm that the semicrystalline PVDF film has predominantly α- and β-phase crystals. The degree of crystallinity of these PB films exhibits non-linear increase, with increasing amount of PEO in the films. The relative fraction of the β-phase crystal of the PVDF in these complex PB films has been determined from the fractional relations based on the areas and intensities of crystalline peaks, observed in their XRD patterns which is found the maximum (~50%) for the 75 PVDF/25 PEO blend film. The dielectric dispersion of these PB films in the frequency window of 20 Hz-1MHz at 27 °C reveals that the real part of the complex permittivity is governed predominantly by the interfacial polarization effect at lower audio frequencies, whereas it mainly depends on the polymer compositional ratio at higher radio frequencies. The segmental relaxation process peak of the PEO chain observed in the loss part of the electric modulus spectra, shifts toward the lower frequency side with a significant suppression of intensity as the amount of PVDF enhances in the PB films. This result confirms that the PEO dynamics face considerable hindrance by the PVDF structures. The dc electrical conductivity of these PB films increases non-linearly with increasing amount of PEO in the films, and varies by more than an order of magnitude with the variation of the compositional ratio over the entire range. The temperature-dependent study of 50 PVDF/50 PEO blend film confirms its thermally activated dielectric properties and the structural dynamics with the relaxation activation energy of 0.23 eV. The compositional ratio-dependent dielectric properties of PVDF/PEO blend films offer a promising potential for their use as dielectric permittivity- and electrical conductivity-tunable insulating materials, with engineered functionality for flexible electronics and electrical devices.

Keywords

PVDF/PEO blend PVDF β-phase degree of crystallinity dielectric properties electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. (1).
    P. Atorngitjawat, Macromol. Res., 25, 391 (2017).Google Scholar
  2. (2).
    P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Prog. Polym. Sci., 39, 683 (2014).Google Scholar
  3. (3).
    M. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth, P. W. M. Blom, and D. M. de Leeuw, J. Mater. Chem. C, 1, 7695 (2013).Google Scholar
  4. (4).
    Prateek, V. K. Thakur, and R. K. Gupta, Chem. Rev., 116, 4260 (2016).Google Scholar
  5. (5).
    W. Xia and Z. Zhang, IET Nanodielectr., 1, 17 (2018).Google Scholar
  6. (6).
    R. Ding, L. Gong, M. Li, S. Chen, S. Zhan, X. Sun, C. Zhang, and T. Shao, Macromol. Res., 26, 965 (2018).Google Scholar
  7. (7).
    Y. Li, D. Zhang, S. Wang, Y. Zhan, J. Yin, X. Tao, X. Ge, S. C. Tjong, H.-Y. Liu, and Y. W. Mai, Compos. Sci. Technol., 171, 152 (2019).Google Scholar
  8. (8).
    X. Bi, S. Song, and S. Sun, Macromol. Res., 25, 1163 (2017).Google Scholar
  9. (9).
    E. Kar, N. Bose, B. Dutta, S. Banerjee, N. Mukherjee, and S. Mukherjee, Energy Convers. Manag., 184, 600 (2019).Google Scholar
  10. (10).
    B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.-W. Harn, Y. Chen, and Z. Lin, Chem. Soc. Rev., 48, 1194 (2019).PubMedGoogle Scholar
  11. (11).
    F. S. Al-Hazmi, D. M. de Leeuw, A. A. Al-Ghamdi, and F. S. Shokr, Curr. Appl. Phys., 17, 1181 (2017).Google Scholar
  12. (12).
    B. Jiang, X. Pang, B. Li, and Z. Lin, J. Am. Chem. Soc., 137, 11760 (2015).PubMedGoogle Scholar
  13. (13).
    C. Tsonos, H. Zois, A. Kanapitsas, N. Soin, E. Siores, G. D. Peppas, E. C. Pyrgioti, A. Sanida, S. G. Stavropoulos, and G. C. Psarras, J. Phys. Chem. Solids, 129, 378 (2019).Google Scholar
  14. (14).
    A. Jain, K. J. Prashanth, A. K. Sharma, A. Jain, and P. N. Rashmi, Polym. Eng. Sci., 55, 1589 (2015).Google Scholar
  15. (15).
    A. Joseph and G. M. Joshi, J. Mater. Sci. Mater. Electron., 29, 4749 (2018).Google Scholar
  16. (16).
    J. P. Jung, J.-S. Kim, T.-S. Han, and J. H. Kim, Macromol. Res., 25, 365 (2017).Google Scholar
  17. (17).
    R. Barstugan, M. Barstugan, and I. Ozaytekin, Compos. Part B, 158, 141 (2019).Google Scholar
  18. (18).
    P. Thakur, A. Kool, N. A. Hoque, B. Bagchi, F. Khatun, P. Biswas, D. Brahma, S. Roy, S. Banerjee, and S. Das, Nano Energy, 44, 456 (2018).Google Scholar
  19. (19).
    S. Dash, R. N. P. Choudhary, and M. N. Goswami, J. Alloys Compd., 715, 29 (2017).Google Scholar
  20. (20).
    N. An, H. Liu, Y. Ding, M. Zhang, and Y. Tang, Appl. Surf. Sci., 257, 3831 (2011).Google Scholar
  21. (21).
    M. Choi, G. Murillo, S. Hwang, J. W. Kim, J. H. Jung, C.-Y. Chen, and M. Lee, Nano Energy, 33, 462 (2017).Google Scholar
  22. (22).
    A. M. Ismail, M. I. Mohammed, and S. S. Fouad, J. Mol. Struct., 1170, 51 (2018).Google Scholar
  23. (23).
    S. Huang, G. Tang, H. Huang, X.-G. Wu, P. Zhou, L. Zou, L. Xie, J. Deng, X. Wang, H. Zhong, and J. Hong, Sci. Bull., 63, 1254 (2018).Google Scholar
  24. (24).
    G. Prasad, P. Sathiyanathan, A. A. Prabu, and K. J. Kim, Macromol. Res., 25, 981 (2017).Google Scholar
  25. (25).
    G. Melilli, D. Lairez, D. Gorse, E. Garcia-Caurel, A. Peinado, O. Cavani, B. Boizot, and M.-C. Clochard, Radiat. Phys. Chem., 142, 54 (2018).Google Scholar
  26. (26).
    S. Wolff, F. Jirasek, S. Beuermann, and M. Türk, RSC Adv., 5, 66644 (2015).Google Scholar
  27. (27).
    P. Xu, W. Fu, Z. Cui, and Y. Ding, Appl. Phys. Lett., 112, 063904 (2018).Google Scholar
  28. (28).
    W. Xia, M. Xie, X. Feng, L. Chen, and Y. Zhao, Macromol. Res., 26, 1225 (2018).Google Scholar
  29. (29).
    L. Zhou, N. Wu, Q. Cao, B. Jing, X. Wang, Q. Wang, and H. Kuang, Solid State Ionics, 249-250, 93 (2013).Google Scholar
  30. (30).
    S. V. Kuppu, A. R. Jeyaraman, P. K. Guruviah, and S. Thambusamy, Curr. Appl. Phys., 18, 619 (2018).Google Scholar
  31. (31).
    X. Li, Y. Chen, X. Hu, Y. Zhang, and L. Hu, J. Membr. Sci., 471, 118 (2014).Google Scholar
  32. (32).
    X. Lin, L. Fan, D. Ren, Z. Jiao, P. Coates, and W. Yang, Compos. Part B: Eng., 114, 58 (2017).Google Scholar
  33. (33).
    M. Muthuvinayagam and C. Gopinathan, Polymer, 68, 122 (2015).Google Scholar
  34. (34).
    F.-C. Chiu and S.-C. Yeh, Polym. Testing, 45, 114 (2015).Google Scholar
  35. (35).
    S. Choudhary and R. J. Sengwa, Mater. Chem. Phys., 142, 172 (2013).Google Scholar
  36. (36).
    Z. Xue, D. He, and X. Xie, J. Mater. Chem. A, 3, 19218 (2015).Google Scholar
  37. (37).
    A. Arya and A. L. Sharma, J. Phys. D. Appl. Phys., 50, 443002 (2017).Google Scholar
  38. (38).
    F. Wang, L. Li, X. Yang, J. You, Y. Xu, H. Wang, Y. Ma, and G. Gao, Sustainable Energy Fuels, 2, 492 (2018).Google Scholar
  39. (39).
    S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, and A. Venimad-hav, Mater. Res. Exp., 6, 035303 (2018).Google Scholar
  40. (40).
    I. S. Elashmawi, N. H. Elsayed, and F. A. Altalhi, J. Alloys Compd., 617, 877 (2014).Google Scholar
  41. (41).
    R. Rathika and S. A. Suthanthiraraj, Macromol. Res., 24, 422 (2016).Google Scholar
  42. (42).
    P. Chen, X. Liang, J. Wang, D. Zhang, S. Yang, W. Wu, W. Zhang, X. Fan, and D. Zhang, J. Sol-Gel Technol., 81, 850 (2017).Google Scholar
  43. (43).
    S. K. Patla, R. Ray, K. Asokan, and S. Karmakar, J. Appl. Phys., 123, 125102 (2018).Google Scholar
  44. (44).
    D. S. Song, H.-Y. Cho, B.-R. Yoon, J. Y. Jho, and J. H. Park, Macromol. Res., 25, 135 (2017).Google Scholar
  45. (45).
    R. Rathika and S. A. Suthanthiraraj, J. Mater. Sci. Mater. Electron., 29, 19632 (2018).Google Scholar
  46. (46).
    F. Deng, X. Wang, D. He, J. Hu, C. Gong, Y. S. Ye, X. Xie, and, Z. Xue, J. Membr. Sci., 491, 82 (2015).Google Scholar
  47. (47).
    Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen, and X. Zhao, J. Phys. Chem. B, 112, 6594 (2008).PubMedGoogle Scholar
  48. (48).
    S. K. Patla, M. Mukhopadhyay, R. Ray, P. Maiti, A. K. Mukhopadhyay, D. Sen, and K. Asokan, Ionics, 25, 2159 (2019).Google Scholar
  49. (49).
    S. Ganesan, P. Karthika, R. Rajarathinam, M. Arthanareeswari, V. Mathew, and P. Maruthamuthu, Solar Energy, 135, 84 (2016).Google Scholar
  50. (50).
    M. Mohamadi, H. Garmabi, and M. Papila, Macromol. Res., 24, 698 (2016).Google Scholar
  51. (51).
    M. Mohamadi, H. Garmabi, and M. Papila, Polym. Bull., 74, 2117 (2017).Google Scholar
  52. (52).
    M. N. Tamaňo-Machiavello, C. M. Costa, J. Molina-Mateo, C. Torregrosa-Cabanilles, J. M. M. Dueňas, S. N. Kalkura, S. Lanceros-Mendez, R. S. I. Serra, and J. L. G. Ribelles, Mater. Today Commun., 4, 214 (2015).Google Scholar
  53. (53).
    M. N. Tamaňo-Machiavello, C. M. Costa, F. J. Romero-Colomer, J. M. M. Dueňas, S. Lanceros-Mendez, and J. L. G. Ribelles, J. Polym. Sci.: Polym. Phys., 56, 588 (2018).Google Scholar
  54. (54).
    I. S. Elashmawi and L. H. Gaabour, Results Phys., 5, 105 (2015).Google Scholar
  55. (55).
    F. H. Abd Elkader, N. A. Hakeem, R. S. Hafez, and A. M. Ismail, J. Inorg. Organomat. Polym. Mater., 28, 1037 (2018).Google Scholar
  56. (56).
    R. J. Sengwa, S. Choudhary, and P. Dhatarwal, Adv. Compos. Hybrid Mater., 2, 162 (2019).Google Scholar
  57. (57).
    S. Choudhary and R. J. Sengwa, Curr. Appl. Phys., 18, 1041 (2018).Google Scholar
  58. (58).
    S. F. Mendes, C. M. Costa, V. Sencadas, J. S. Nunes, P. Costa, R. G. Jr., and S. L. Méndez, Appl. Phys. A, 96, 899 (2009).Google Scholar
  59. (59).
    A. Jain, S. J. Kumar, M. R. Kumar, A. S. Ganesh, and S. Srikanth, Mech. Adv. Mater. Struct., 21, 181 (2014).Google Scholar
  60. (60).
    I.-H. Kim, D. H. Baik, and Y. G. Jeong, Macromol. Res., 20, 920 (2012).Google Scholar
  61. (61).
    P. Xu, W. Fu, X. Luo, and Y. Ding, Mater. Lett., 206, 60 (2017).Google Scholar
  62. (62).
    R. J. Sengwa and S. Choudhary, J. Alloys Compd., 701, 652 (2017).Google Scholar
  63. (63).
    S. Choudhary and R. J. Sengwa, J. Polym. Res., 24, 54 (2017).Google Scholar
  64. (64).
    A. M. Abdelghany, E. M. Abdelrazek, S. I. Badr, and M. A. Morsi, Mater. Design, 97, 532 (2016).Google Scholar
  65. (65).
    S. Choudhary and R. J. Sengwa, J. Inorg. Organomet. Polym. Mater., 29, 592 (2018).Google Scholar
  66. (66).
    P. Dhatarwal, R. J. Sengwa, and S. Choudhary, SN Appl. Sci., 1, 112 (2019).Google Scholar
  67. (67).
    X. Cai, T. Lei, D. Sun, and L. Lin, RSC Adv., 7, 15382 (2017).Google Scholar
  68. (68).
    S. R. A. Karim, L. H. Sim, C. H. Chan, and H. Ramli, Macromol. Symp., 354, 374 (2015).Google Scholar
  69. (69).
    K. Kiran Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma, and V. V. R. Narasimha Rao, J. Membr. Sci., 454, 200 (2014).Google Scholar
  70. (70).
    B. Jinisha, K. M. Anilkumar, M. Manoj, V. S. Pradeep, and S. Jayalekshmi, Electrochim. Acta, 235, 210 (2017).Google Scholar
  71. (71).
    A. Rajeh, M. A. Morsi, and I. S. Elashmawi, Vacuum, 159, 430 (2019).Google Scholar
  72. (72).
    S. Cho, J. S. Lee, and J. Jang, ACS Appl. Mater. Interfaces, 7, 9668 (2015).PubMedGoogle Scholar
  73. (73).
    Q. Fu, G. Lin, X. Chen, Z. Yu, R. Yang, M. Li, X. Zeng, and J. Chen, Energy Technol., 6, 144 (2018).Google Scholar
  74. (74).
    K. Deshmukh, M. B. Ahamed, R. R. Deshmukh, S. K. K. Pasha, K. K. Sadasivuni, D. Ponnamma, and M. Al-Ali AlMaadeed, J. Mater. Sci. Mater. Electron., 28, 559 (2017).Google Scholar
  75. (75).
    M. S. Gaur, A. P. Indolia, A. A. Rogachev, and A. V. Rahachou, J. Therm. Anal. Calorim., 122, 1403 (2015).Google Scholar
  76. (76).
    X.-J. Zha, J.-H. Pu, L.-F. Ma, T. Li, R.-Y. Bao, L. Bai, Z.-Y. Liu, M. B. Yang, and W. Yang, Compos. Part A, 105, 118 (2018).Google Scholar
  77. (77).
    H. Li, Z. Chen. L. Liu, J. Chen, M. Jiang, and C. Xiong, Compos. Sci. Technol., 121, 49 (2015).Google Scholar
  78. (78).
    F. Mao, Z. Shi, J. Wang, C. Zhang, C. Yang, and M. Huang, Adv. Compos. Hybrid Mater., 1, 548 (2018).Google Scholar
  79. (79).
    P. Wang, P. Xu, Y. Zhou, Y. Yang, and Y. Ding, Eur. Polym. J., 99, 58 (2018).Google Scholar
  80. (80).
    W. Zhou, Y. Gong, L. Tu, L. Xu, W. Zhao, J. Cai, Y. Zhang, and A. Zhou, J. Alloys Compd., 693, 1 (2017).Google Scholar
  81. (81).
    X. Zhang, S. Zhao, F. Wang, Y. Ma, L. Wang, D. Chen, C. Zhao, and W. Yang, App. Surf. Sci., 403, 71 (2017).Google Scholar
  82. (82).
    N. Jahan, F. Mighri, D. Rodrigue, and A. Ajji, Appl. Clay Sci., 152, 93 (2018).Google Scholar
  83. (83).
    Y. Gong, W. Zhou, Z. Wang, L. Xu, Y. Kou, H. Cai, X. Liu, Q. Chen, and Z.-M. Dang, J. Mater. Sci. Technol., 34, 2415 (2018).Google Scholar
  84. (84).
    W. Zhou, L. Xu, L. Jiang, J. Peng, Y. Gong, X. Liu, H. Cai, G. Wang, and Q. Chen, J. Alloys Compd., 710, 47 (2017).Google Scholar
  85. (85).
    Y. Zhu, P. Jiang, Z. Zhang, and X. Huang, Chinese Chem. Lett., 28, 2027 (2017).Google Scholar
  86. (86).
    X. Hu, K. Yi, J. Liu, and B. Chu, Energy Technol., 6, 849 (2018).Google Scholar
  87. (87).
    Z. Wang, T. Wang, Y. Xiao, W. Nian, and H. Chen, Ceram. Int., 44, S181 (2018).Google Scholar
  88. (88).
    S. Choudhary and R. J. Sengwa, Polym. Bull., 72, 2591 (2015).Google Scholar
  89. (89).
    J. Yu, W. Wu, D. Dai, Y. Song, C. Li, and N. Jiang, Macromol. Res., 22, 19 (2014).Google Scholar
  90. (90).
    H. Rekik, Z. Ghallabi, I. Royaud, M. Arous, G. Seytre, G. Boiteux, and A. Kallel, Compos. Part B, 45, 1199 (2013).Google Scholar
  91. (91).
    C. Tsonos, C. Pandis, N. Soin, D. Sakellari, E. Myrovali, S. Kripotou, A. Kanapitsas, and E. Siores, Express Polym. Lett., 9, 1104 (2015).Google Scholar
  92. (92).
    S. Choudhary, J. Mater. Sci. Mater. Electron., 29, 10517 (2018).Google Scholar
  93. (93).
    D. He, Y. Wang, L. Zhang, S. Song, and Y. Deng, Compos. Sci. Technol., 159, 162 (2018).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Dielectric Research Laboratory, Department of PhysicsJai Narain Vyas UniversityJodhpurIndia

Personalised recommendations