Advertisement

Preparation of Thin-Layer Graphene Using RAFT Polymerization and a Thiol-Ene Click Reaction

  • Minho Kwon
  • Taeheon Lee
  • Youngsil Lee
  • Jong Hun HanEmail author
  • Hyun-jong PaikEmail author
Article
  • 10 Downloads

Abstract

In this paper, functionalization of graphene is conducted through click reactions for its effective dispersion. The poly(sodium 4-styrenesolfonate) (PSS) was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The chain end dithioester group of RAFT-polymerized PSS was reduced to a thiol and used to couple PSS to graphene oxide (GO) via a thiol-ene click reaction. An aqueous dispersion of reduced GO with PSS (PSS-rGO) resisted sedimentation due to steric effects and charge-charge repulsion between the PSS attached to rGO. Atomic force microscopy showed that the PSS-rGO mixture was composed of dispersed particles of thin-layer (1.5 nm thick) graphene. Thickness of the PSS-rGO was close to that of GO. This indicates that there was no significant re-aggregation during GO reducing process.

Keywords

graphene functionalized graphene oxide RAFT thiol-ene click chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by Nano-Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3A7B4014045). The authors also acknowledge the Korea Basic Science Institute, Busan center, for assistance with the X-ray photoelectron spectroscopy. This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024334).

Supplementary material

References

  1. (1).
    Y. Cui, H. Zhang, W. Chen, Z. Yang, and Q. Cai, J. Phys. Chem. C, 121, 15282 (2017).CrossRefGoogle Scholar
  2. (2).
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, Adv. Mater., 21, 1275 (2009).CrossRefGoogle Scholar
  3. (3).
    D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, and H.-M. Cheng, ACS Nano, 3, 1745 (2009).CrossRefGoogle Scholar
  4. (4).
    S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, Carbon, 48, 4466 (2010).CrossRefGoogle Scholar
  5. (5).
    Y. J. Noh, H.-I. Joh, J. Yu, S. H. Hwang, S. Lee, C. H. Lee, S. Y. Kim, and J. R. Youn, Sci. Rep., 5, 9141 (2015).CrossRefGoogle Scholar
  6. (6).
    J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science, 315, 490 (2007).CrossRefGoogle Scholar
  7. (7).
    D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).CrossRefGoogle Scholar
  8. (8).
    X. Qi, T. Zhou, S. Deng, G. Zong, X. Yao, and Q. Fu, J. Mater. Sci., 49, 1785 (2014).CrossRefGoogle Scholar
  9. (9).
    S. Ma, Y. Si, F. Wang, L. Su, C. Xia, J. Yao, H. Chen, and X. Liu, Sci. Rep., 7, 2588 (2017).CrossRefGoogle Scholar
  10. (10).
    M. Lotya, P.J. King, U. Khan, S. De, and J. N. Coleman, ACS Nano, 4, 3155 (2010).CrossRefGoogle Scholar
  11. (11).
    Z. Sun, S. Pöller, X. Huang, D. Guschin, C. Taetz, P. Ebbinghaus, J. Masa, A. Erbe, A. Kilzer, and W. Schuhmann, Carbon, 64, 288 (2013).CrossRefGoogle Scholar
  12. (12).
    B.-S. Kim, D. Kim, K.-W. Kim, T. Lee, S. Kim, K. Shin, S. Chun, J. H. Han, Y. S. Lee, and H.-J. Paik, Carbon, 72, 57 (2014).CrossRefGoogle Scholar
  13. (13).
    T. Lee, B. Kim, S. Kim, J.H. Han, H.B. Jeon, Y.S. Lee, and H.-J. Paik, Nanoscale, 7, 6745 (2015).CrossRefGoogle Scholar
  14. (14).
    T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010).CrossRefGoogle Scholar
  15. (15).
    T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, and J.H. Lee, Prog. Mater. Sci., 57, 1061 (2012).CrossRefGoogle Scholar
  16. (16).
    H. M. Etmimi, M. P. Tonge, and R. D. Sanderson, J. Polym. Sci. Part A: Polym. Chem., 49, 1621 (2011).CrossRefGoogle Scholar
  17. (17).
    T. A. Pham, N. A. Kumar, and Y. T. Jeong, Synthetic Met., 160, 2028 (2010).CrossRefGoogle Scholar
  18. (18).
    C. Ding, C. Fan, X. Pan, Z. Zhang, J. Zhu, and X. Zhu, Polym. Chem., 8, 3958 (2017).CrossRefGoogle Scholar
  19. (19).
    A. D. Jenkins, R. G. Jones, and G. Moad, Pure Appl. Chem., 82, 483 (2009).CrossRefGoogle Scholar
  20. (20).
    S. H. Lee, D. R. Dreyer, J. An, A. Velamakanni, R. D. Piner, S. Park, Y. Zhu, S. O. Kim, C. W. Bielawski, and R. S. Ruoff, Macromol. Rapid Commun., 31, 281 (2010).CrossRefGoogle Scholar
  21. (21).
    O. García-Valdez, R. Ledezma-Rodríguez, E. Saldívar-Guerra, L. Yate, S. Moya, and R. F. Ziolo, Polymer, 55, 2347 (2014).CrossRefGoogle Scholar
  22. (22).
    Y. Yang, X. Song, L. Yuan, M. Li, J. Liu, R. Ji, and H. Zhao, J. Polym. Sci. Part A: Polym. Chem., 50, 329 (2012).CrossRefGoogle Scholar
  23. (23).
    C. E. Hoyle, A. B. Lowe, and C. N. Bowman, Chem. Soc. Rev., 39, 1355 (2010).CrossRefGoogle Scholar
  24. (24).
    J. Han and C. Gao, Nano-Micro Lett., 2, 213 (2010).CrossRefGoogle Scholar
  25. (25).
    B. Iskin, G. Yilmaz, and Y. Yagci, Chem. A: Europ. J., 18, 10254 (2012).Google Scholar
  26. (26).
    X. Luo, K. Ma, T. Jiao, R. Xing, L. Zhang, J. Zhou, and B. Li, Nanoscale Res. Lett., 12, 99 (2017).CrossRefGoogle Scholar
  27. (27).
    J. Zhou, Y. Liu, T. Jiao, R. Xing, Z. Yang, J. Fan, J. Liu, B. Li, Q. Peng, Colloid. Surface. A: Physicochem. Eng. Asp., 538, 7 (2018).CrossRefGoogle Scholar
  28. (28).
    N. D. Luong, L. H. Sinh, L. S. Johansson, J. Campell, and J. Seppälä, Chem. A: Eur. J., 21, 3183 (2015).Google Scholar
  29. (29).
    W. Shen, Q. Qiu, Y. Wang, M. Miao, B. Li, T. Zhang, A. Cao, and Z. An, Macromol. Rapid Commun., 31, 1444 (2010).CrossRefGoogle Scholar
  30. (30).
    J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. Tascon, Langmuir, 24, 10560 (2008).CrossRefGoogle Scholar
  31. (31).
    A. C. de Leon, B. J. Rodier, Q. Luo, C. M. Hemmingsen, P. Wei, K. Abbasi, R. Advincula, and E. B. Pentzer, ACS Nano, 11, 7485 (2017).CrossRefGoogle Scholar
  32. (32).
    Y. A. Kim, K. Fujisawa, H. Muramatsu, T. Hayashi, M. Endo, T. Fujimori, K. Kaneko, M. Terrones, J. Behrends, and A. Eckmann, ACS Nano, 6, 6293 (2012).CrossRefGoogle Scholar
  33. (33).
    T. Kuila, P. Khanra, S. Bose, N. H. Kim, B.-C. Ku, B. Moon, and J. H. Lee, Nanotechnology, 22, 305710 (2011).CrossRefGoogle Scholar
  34. (34).
    F. T. Johra, J.-W. Lee, and W.-G. Jung, J. Indust. Eng. Chem., 20, (2014) 2883–2887.CrossRefGoogle Scholar
  35. (35).
    S.-K. Jerng, D.S. Yu, J.H. Lee, C. Kim, S. Yoon, and S.-H. Chun, Nanoscale Res. Lett., 6, 565 (2011).CrossRefGoogle Scholar
  36. (36).
    F.-P. Du, N.-N. Cao, Y.-F. Zhang, P. Fu, Y.-G. Wu, Z.-D. Lin, R. Shi, A. Amini, and C. Cheng, Sci. Rep., 8, 6441 (2018).CrossRefGoogle Scholar
  37. (37).
    M. Braglia, I.V. Ferrari, T. Djenizian, S. Kaciulis, P. Soltani, M. L. Di Vona, and P. Knauth, ACS Appl. Mater. Interfaces, 9, 22902 (2017).CrossRefGoogle Scholar
  38. (38).
    M. P. Araújo, O. Soares, A. Fernandes, M. Pereira, and C. Freire, RSC Adv., 7, 14290 (2017).CrossRefGoogle Scholar
  39. (39).
    C. Zhang, M. Chen, X. Xu, L. Zhang, L. Zhang, F. Xia, X. Li, Y. Liu, W. Hu, and J. Gao, Nanotechnology, 25, 135707 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringPusan National UniversityBusanKorea
  2. 2.Industry-Academic CooperationKumoh National Institute of TechnologyGumiKorea
  3. 3.School of Chemical Engineering and Optoelectronics Convergence Research CenterChonnam National UniversityGwangjuKorea

Personalised recommendations