Preparation and Evaluation of Cross-Linked Chitosan/Silver Sulfide Luminescence Nanocomposites by Using Green Capping Agent Against Some Pathogenic Microbial Strains

  • Mohammad hasan Moshafi
  • Mehdi RanjbarEmail author
  • Neda Hedayatifar


In this paper, different silver sulfide (Ag2S) nanoparticles were cross-linked with chitosan, as a biodegradable and bioactive polymer. Chitosan/Ag2S nano-composites were synthesized for the first time, using multistage distillation, with the micellization-assisted ultrasonic method. The designed nanocomposites system was evaluated, for in vitro efficient antibacterial activity. Various factors, including concentration of surfactants, pulse time, power irradiation, and interaction between these factors, will directly affect different properties of the cross-linked chitosan/Ag2S nanocomposites. Results showed that cross-linked nanopolymer networks are capable of considerably inhibiting growth of antibiotic-resistant Escherichia coli, pseudomonas aeruginosa, and Serratia marcescens as gram-negative bacteria, and Bacillus subtilis and Micrococcus luteus as gram-positive bacteria, between 64 up and 32 μg/mL. Antibacterial activity was conducted against 7 Gram-negative and Gram-positive bacteria using agar well diffusion assay and minimum inhibitory concentration (MIC), was determined. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), atomic force microscopy (AFM), Fourier transformed infrared spectrum (FT-IR), thermo-gravimetric analysis (TGA), and dynamic light scattering (DLS).


crosslinking chitosan/Ag2nanocomposites antibacterial activity green capping agent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors are grateful to council of Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.


  1. (1).
    S. Shankar, R. Pangeni, J. W. Park, and J. W. Rhim, Mater. Sci. Eng. C, 92, 508 (2018).CrossRefGoogle Scholar
  2. (2).
    J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, Nano Lett., 10, 3223 (2010).CrossRefGoogle Scholar
  3. (3).
    S. Dutz, M. Kettering, I. Hilger, and R. Müller, Nanotechnology, 22, 265102 (2011).CrossRefGoogle Scholar
  4. (4).
    E. Piktel and K. Niemirowicz, J. Nanobiotechnol., 14, 39 (2016).CrossRefGoogle Scholar
  5. (5).
    H. S. Nalwa, J. Biomed. Nanotechnol., 10, 2421 (2014).CrossRefGoogle Scholar
  6. (6).
    H. Soltani, A. Pardakhty, and S. Ahmadzadeh, J. Mol. Liquids, 219, 63 (2016).CrossRefGoogle Scholar
  7. (7).
    M. Fouladgar and S. Ahmadzadeh, Appl. Surf. Sci., 379, 150 (2016).CrossRefGoogle Scholar
  8. (8).
    Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, and D. Li, Water Res., 42, 4591 (2008).CrossRefGoogle Scholar
  9. (9).
    A. A. Velayati, M. R. Masjedi, P. Farnia, and P. Tabarsi, Chest, 136, 420 (2009).CrossRefGoogle Scholar
  10. (10).
    S. D. Lakshmi, P. K. Avti, and G. Hegde, Nano-Structures Nano-Objects, 16, 306 (2018).CrossRefGoogle Scholar
  11. (11).
    R. Sharma, D. Francois, and M. R. Hammerschlag, Pediatric Clinics of North America, 64, 1369 (2017).CrossRefGoogle Scholar
  12. (12).
    G. Wu, M. Zhou, and Y. Ke, Mater. Lett., 223, 239 (2018).CrossRefGoogle Scholar
  13. (13).
    H. Palza, Int. J. Mol. Sci., 16, 2099 (2015).CrossRefGoogle Scholar
  14. (14).
    M. A. Dar, A. Ingle, and M. Rai, Nanomedicine, 9, 105 (2013).CrossRefGoogle Scholar
  15. (15).
    N. Sanvicens, C. Pastells, and N. Pascual, Trends Anal. Chem., 28, 1243 (2009).CrossRefGoogle Scholar
  16. (16).
    Y. Fang, S. Guo, D. Li, C. Zhu, W. Ren, S. Dong, and E. Wang, ACS Nano, 6, 400 (2011).CrossRefGoogle Scholar
  17. (17).
    K. M. S. Meera, R. M. Sankar, S. N. Jaisankar, and A. B. Manda, J. Phys. Chem. B, 117, 2682 (2013).CrossRefGoogle Scholar
  18. (18).
    M. N. Nadagouda and R. S. Varma, Macromol. Rapid Commun., 28, 465 (2007).CrossRefGoogle Scholar
  19. (19).
    L. Shao, X. Chang, Y. Zhang, Y. Huang, and Y. Yao, Appl. Surf. Sci., 280, 989 (2013).CrossRefGoogle Scholar
  20. (20).
    R. C. Goy, D. de Britto, and O. B. G. Assis, Polímeros, 19, 241 (2009).CrossRefGoogle Scholar
  21. (21).
    J. Li, Y. Wu, and L. Zhao, Carbohydr. Polym., 148, 200 (2016).CrossRefGoogle Scholar
  22. (22).
    C. Do, X. Chang, Y. Zhang, Y. Huang, and Y. Yao, J. Polym. Sci., Part A: Polym. Chem., 25, 2301 (1987).CrossRefGoogle Scholar
  23. (23).
    C. Do, X. Chang, Y. Zhang, Y. Huang, and Y. Yao, J. Polym. Sci., Part A: Polym. Chem., 25, 2409 (1987).CrossRefGoogle Scholar
  24. (24).
    W. G. Becker and A. J. Bard, J. Phys. Chem., 87, 4888 (1983).CrossRefGoogle Scholar
  25. (25).
    D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys., 84, 2841 (1998).CrossRefGoogle Scholar
  26. (26).
    F. A. Prakash and G. J. Dushendra, Int. J. Nanotechnol. Appl., 5, 99 (2011).Google Scholar
  27. (27).
    A. Besinis, T. De Peralta, and R. D. Handy, Nanotoxicology, 8, 1 (2014).CrossRefGoogle Scholar
  28. (28).
    A. M. Abdelgawad, S. M. Hudson, and O. J. Rojas, Carbohydr. Polym., 100, 166 (2014).CrossRefGoogle Scholar
  29. (29).
    A. Alonso, N. Vigués, and X. Muñoz-Berbel, Chem. Commun., 47, 10464 (2011).CrossRefGoogle Scholar
  30. (30).
    V. Shah, S. Shah, H. Shah, F. J. Rispoli, and K. T. McDonnell, PLoS One, 7, e47827 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Mohammad hasan Moshafi
    • 1
  • Mehdi Ranjbar
    • 1
    Email author
  • Neda Hedayatifar
    • 2
  1. 1.Pharmaceutics Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
  2. 2.Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran

Personalised recommendations