Smac Gene Delivery by the Glycol Chitosan with Low Molecular Weight Polyethylenimine Induces Apoptosis of Cancer Cells for Combination Therapy with Etoposide

  • Yoonhee Bae
  • Young Hwa Lee
  • Kyung Soo Ko
  • Jin HanEmail author
  • Joon Sig ChoiEmail author


We developed polymer-based nanoparticle carriers for gene delivery, glycol chitosan (GC)-methyl acrylate-low molecular weight polyethylenimine (800Da PEI), GMP, and investigated their ability to deliver second mitochondria-activation of caspase (Smac) gene into cancer cell lines. We analyzed cytotoxicity level and gene transfection efficiency in GBL-14, U373-MG, MDA-MB-231, and dermal fibroblasts (HDF) cell lines. GMP exhibited significantly lower cytotoxicity level, as compared with PEI25KD. Also, it showed high transfection efficiency in these cell lines. We treated these cells with a complex of GMP and Smac, and investigated their facilitated cellular uptake by flow cytometry. Also, analyses using cell cycle distribution, Annexin V staining, JC-1, and caspase-3 activity, indicated that apoptosis was induced by GMP/FLAG-Smac combined with etoposide in MDA-MB-231 cell line. This study demonstrates that combining the GMP/FLAG-Smac complex with chemotherapeutic agents could potentially be an effective approach for cancer therapy.


Smac nanoparticle GMP apoptosis etoposide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7130_MOESM1_ESM.pdf (913 kb)
Supporting Information


  1. (1).
    W. H. Gmeiner and S. Ghosh, Nanotechnol. Rev., 3, 111 (2015).Google Scholar
  2. (2).
    K. Jeong C. S. Kang Y. Kim, Y. D. Lee, I. C. Kwon, and S. Kim, Cancer Lett., 374, 31 (2016).CrossRefGoogle Scholar
  3. (3).
    K. H. Bae, H. J. Chung, and T. G. Park, Mol. Cells, 31, 295 (2011).CrossRefGoogle Scholar
  4. (4).
    D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and R. Langer, Nat. Nanotechnol., 2, 751 (2007).CrossRefGoogle Scholar
  5. (5).
    S. Chira, C. S. Jackson, I. Oprea, F. Ozturk, M. S. Pepper, I. Diaconu, C. Braicu, L.-Z. Raduly, G. A. Calin, and I. Berindan-Neagoe, Oncotarget, 6, 30675 (2015).CrossRefGoogle Scholar
  6. (6).
    C. M. Paleos, L.-A. Tziveleka, Z. Sideratou, and D. Tsiourvas, ExpertOpin. Drug Deliv, 6, 27 (2009).CrossRefGoogle Scholar
  7. (7).
    C. H. Jones, C. K. Chen, A. Ravikrishnan, S. Rane, and B. A. Pfeifer, Molecular pharmaceutics, 10, 4082 (2013).CrossRefGoogle Scholar
  8. (8).
    A. Pathak, S. Patnaik, and K. C. Gupta, Biotechnol. J., 4, 1559 (2009).CrossRefGoogle Scholar
  9. (9).
    M. S. Al-Dosari and X. Gao, AAPS J., 11, 671 (2009).CrossRefGoogle Scholar
  10. (10).
    S. M. Ahsan, M. Thomas, K. K. Reddy, S. G. Sooraparaju, A. Asthana, and I. Bhatnagar, Int. J. Biol. Macromol., 110, 97 (2018).CrossRefGoogle Scholar
  11. (11).
    S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont, and J. C. Fernandes, Eur. J. Pharm. Biopharm., 57, 1 (2004).CrossRefGoogle Scholar
  12. (12).
    W. G. Liu and K. D. Yao, J. Control. Release, 83, 1 (2002).CrossRefGoogle Scholar
  13. (13).
    H. Y. Nam, S. M. Kwon, H. Chung, S.-Y. Lee, S.-H. Kwon, H. Jeon, Y. Kim, J. H. Park, J. Kim, S. Her, Y.-K. Oh, I. C. Kwon, K. Kim, and S. Y. Jeonge, J. Control. Release, 135, 259 (2009).CrossRefGoogle Scholar
  14. (14).
    H. Koo, K. H. Min, S. C. Lee, J. H. Park, K. Park, S. Y. Jeong, K. Choi, I. C. Kwon, and K. Kim, J. Control. Release, 172, 823 (2013).CrossRefGoogle Scholar
  15. (15).
    H. Koo, M. S. Huh, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim, and I. C. Kwon, Acc. Chem. Res., 44, 1018 (2011).CrossRefGoogle Scholar
  16. (16).
    I. C. Sun, J. H. Na, S. Y. Jeong, D. E. Kim, I. C. Kwon, K. Choi, C. H. Ahn, K. and Kim, Pharm. Res., 31, 1418 (2014).CrossRefGoogle Scholar
  17. (17).
    H. S. Yoo, J. E. Lee, H. Chung, I. C. Kwon, and S. Y. Jeong, J. Control. Release, 103, 235 (2005).CrossRefGoogle Scholar
  18. (18).
    C. Adrain, E. M. Creagh, and S. J. Martin, EMBO J., 20, 6627 (2001).CrossRefGoogle Scholar
  19. (19).
    H. L. Mao, Y. Pang, X. Zhang, F. Yang, J. Zheng, Y. Wang, and P. Liu, Oncol. Rep., 29, 515 (2013).CrossRefGoogle Scholar
  20. (20).
    Y. Bae, C. W. Kho, S. Y. Lee, H. Rhim, and S. Kang, Biochem. Biophys. Res. Commun., 397, 718 (2010).CrossRefGoogle Scholar
  21. (21).
    K. M. Bockbrader, M. Tan, and Y. Sun, Oncogene, 24, 7381 (2005).CrossRefGoogle Scholar
  22. (22).
    G. Martinez-Ruiz, V. Maldonado, G. Ceballos-Cancino, J. P. R. Grajeda, and J. Melendez-Zajgla, J. Exp. Clin. Cancer Res., 27, 48 (2008).CrossRefGoogle Scholar
  23. (23).
    Y. Bae, Y. H. Lee, S. Lee, J. Han, K. S. Ko, and J. S. Choi, Carbohydrate Polym., 153, 379 (2016).CrossRefGoogle Scholar
  24. (24).
    Y. H. Lee, H. I. Park, and J. S. Choi, Carbohydrate Polym., 137, 669 (2016).CrossRefGoogle Scholar
  25. (25).
    Y. Bae, E. S. Green, G.-Y. Kim, S. J. Song, J. Y. Mun, S. Lee, J.-I. Park, J.-S. Park, K. S. Ko, J. Han, and J. S. Choi, Int. J. Pharm., 515, 186 (2016).CrossRefGoogle Scholar
  26. (26).
    Y. Bae, M. K. Jung, S. Lee, S. J. Song, J. Y. Mun, E. S. Green, J. Han, K. S. Ko, and J. S. Choi, Eur. J. Pharm. Biopharm., 124, 104 (2018).CrossRefGoogle Scholar
  27. (27).
    Y. Bae, H.-S. Rhim, S. Lee, K. S. Ko, J. Han, and J. S. Choi, J. Pharm. sci., 106, 1618 (2017).CrossRefGoogle Scholar
  28. (28).
    L. Sun, Y. Li, X. Liu, M. Jin, L. Zhang, Z. Du, C. Guo, P. Huang, and Z. Sun, Toxicol. In vitro, 25, 1619 (2011).CrossRefGoogle Scholar
  29. (29).
    T. A. Theodossiou, Z. Sideratou, M. E. Katsarou, and D. Tsiourvas, Pharm. Res., 30, 2832 (2013).CrossRefGoogle Scholar
  30. (30).
    A. L. Holder, R. Goth-Goldstein, D. Lucas, and C. P. Koshland, Chem. Res. Toxicol., 25, 1885 (2012).CrossRefGoogle Scholar
  31. (31).
    N. Silver, S. Best, J. Jiang, and S. L. Thein, BMC Mol. Biol., 7, 33 (2006).CrossRefGoogle Scholar
  32. (32).
    J. Zhao, J. Jin, X. Zhang, M. Shi, J. Dai, M. Wu, R. Wang, and Y. Guo, Cancer Gene Therapy, 13, 420 (2006).CrossRefGoogle Scholar
  33. (33).
    G. Ceballos-Cancino, M. Espinosa, V. Maldonado, and J. Melendez-Zajgla, Oncogene, 26, 7569 (2007).CrossRefGoogle Scholar
  34. (34).
    S. Pietkiewicz, J. H. Schmidt, and I. N. Lavrik, J. Immunol. Methods, 423, 99 (2015).CrossRefGoogle Scholar
  35. (35).
    Q. Sun, X. Zheng, L. Zhang, and J. Yu, Clin. Cancer Res., 17, 2361 (2011).CrossRefGoogle Scholar
  36. (36).
    B. P. Shah, N. Pasquale, G. De, T. Tan, J. Ma, and K.-B. Lee, ACS Nano, 8, 9379 (2014).CrossRefGoogle Scholar
  37. (37).
    X. Ma, L.-H. Zhang, L.-R. Wang, X. Xue, J.-H. Sun, Y. Wu, G. Zou, X. Wu, P. C. Wang, W. G. Wamer, J.-J. Yin, K. Zheng, and X.-J. Liang, ACS Nano, 6, 10486 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, College of Natural ScienceChungnam National UniversityDaejeonKorea
  2. 2.Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease CenterInje UniversityBusanKorea
  3. 3.Department of internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease CenterInje UniversitySeoulKorea

Personalised recommendations