Advertisement

Poly(propylene ether carbonate)-Based Di- and Tri-Block Copolymers: Synthesis and Chromatographic Characterization

  • Rubina Abdul-Karim
  • Syed Ghulam Musharraf
  • Muhammad Imran MalikEmail author
Article
  • 6 Downloads

Abstract

In this study, ring-opening polymerization (ROP) of propylene carbonate (PC) is conducted for synthesis of novel amphiphilic di- and tri-block copolymers containing poly(ethylene oxide) as hydrophilic with poly(propylene ether-carbonate (PPEC) as a hydrophobic block. A series of di- and tri-block copolymers is synthesized, by using macro-initiators [polyethylene glycol monomethyl ethers and poly(ethylene glycol)s] of different molar masses, while systematically varying monomer to macro-initiator ratio. The synthesized block copolymers are characterized by size exclusion chromatography, for augmentation in the molar mass, NMR for average chemical composition while liquid chromatography at critical conditions, is used for comparison of individual block lengths alongside purity of block copolymers, with regard to presence of homopolymers of both types. Chromatographic critical conditions of the polymer synthesized by ROP of PC, PPEC, are reported for the first time. Established chromatographic critical conditions of PEG and PPEC, successfully tracked presence of homopolymers of both types, with fair comparison of individual block lengths of the block copolymers synthesized by the same macro-initiator.

Keywords

biodegradable polymers poly(propylene ether-carbonate) amphiphilic block copolymers liquid chromatography at critical conditions chromatographic critical conditions of poly(propylene ether-carbonate) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W. Chen, F. Meng, R. Cheng, C. Deng, J. Feijen, and Z. Zhong, J. Control. Release, 190, 398 (2014).CrossRefGoogle Scholar
  2. (2).
    Y. Zhu, B. Yang, S. Chen, and J. Du, Prog. Polym. Sci., 64, 1 (2017).CrossRefGoogle Scholar
  3. (3).
    H. Otsuka, Y. Nagasaki, and K. Kataoka, Adv. Drug Deliv. Rev., 64, 246 (2012).CrossRefGoogle Scholar
  4. (4).
    K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Angew. Chem. Int. Ed., 49, 6288 (2010).CrossRefGoogle Scholar
  5. (5).
    G. Rokicki, Prog. Polym. Sci., 25, 259 (2000).CrossRefGoogle Scholar
  6. (6).
    S. Tempelaar, L. Mespouille, O. Coulembier, P. Dubois, and A. P. Dove, Chem. Soc. Rev., 42, 1312 (2013).CrossRefGoogle Scholar
  7. (7).
    J. Xu, E. Feng, and J. Song, J. Appl. Polym. Sci., 131, 39822 (2014).CrossRefGoogle Scholar
  8. (8).
    A. K. Diallo, W. Guerin, M. Slawinski, J.-M. Brusson, J.-F. Carpentier, and S. M. Guillaume, Macromolecules, 48, 3247 (2015).CrossRefGoogle Scholar
  9. (9).
    K. Fukushima, Biomater. Sci., 4, 9 (2016).CrossRefGoogle Scholar
  10. (10).
    R. Abdul-Karim, S. G. Musharraf, and M. I. Malik, J. Polym. Sci., Part A: Polym. Chem., 55, 1887 (2017).CrossRefGoogle Scholar
  11. (11).
    R. Abdul-Karim, A. Hameed, and M. I. Malik, RSC Adv., 7, 11786 (2017).CrossRefGoogle Scholar
  12. (12).
    J.-C. Lee and M. H. Litt, Macromolecules, 33, 1618 (2000).CrossRefGoogle Scholar
  13. (13).
    R. F. Harris, J. Appl. Polym. Sci., 37, 183 (1989).CrossRefGoogle Scholar
  14. (14).
    K. Soga, Y. Tazuke, S. Hosoda, and S. Ikeda, J. Polym. Sci., Part A: Polym. Chem., 15, 219 (1977).Google Scholar
  15. (15).
    L. Vogdanis, B. Martens, H. Uchtmann, F. Hensel, and W. Heitz, Macromol. Chem. Phys., 191, 465 (1990).CrossRefGoogle Scholar
  16. (16).
    R. F. Storey and D. C. Hoffman, Macromolecules, 25, 5369 (1992).CrossRefGoogle Scholar
  17. (17).
    R. Abdul-Karim, A. Hameed, and M. I. Malik, Eur. Polym. J., 105, 95 (2018).CrossRefGoogle Scholar
  18. (18).
    H. Pasch and B. Trathnigg Multidimensional HPLC of Polymers, Springer, Berlin-Heidelberg-New York, 2013.CrossRefGoogle Scholar
  19. (19).
    M. I. Malik and H. Pasch, Prog. Polym. Sci., 39, 87 (2014).CrossRefGoogle Scholar
  20. (20).
    E. Uliyanchenko, S. van der Wal, and P. J. Schoenmakers, Polym. Chem., 3, 2313 (2012).CrossRefGoogle Scholar
  21. (21).
    A. Baumgaertel, E. Atuntas, and U. S. Schubert, J. Chromatogr. A, 1240, 1 (2012).CrossRefGoogle Scholar
  22. (22).
    A. M. Striegel, W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, John Wiley and Sons Inc, Hoboken, New jersey, 2009.CrossRefGoogle Scholar
  23. (23).
    S. Podzimek, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation: Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles, John Wiley and Sons, Hoboken, New Jersey, 2011.CrossRefGoogle Scholar
  24. (24).
    D. Berek, J. Sep. Sci., 33, 315 (2010).CrossRefGoogle Scholar
  25. (25).
    W. Radke, J. Chromatogr. A, 1335, 62 (2014).CrossRefGoogle Scholar
  26. (26).
    G. Glöckner, Gradient HPLC of Copolymers and Chromatographic Cross-Fractionation, Springer-Verlag Berlin Heidelberg, 1991.CrossRefGoogle Scholar
  27. (27).
    W. Jiang, S. Khan, and Y. Wang, Macromolecules, 38, 7514 (2005).CrossRefGoogle Scholar
  28. (28).
    H. Gao, K. Min, and K. Matyjaszewski, Macromol. Chem. Phys., 207, 1709 (2006).CrossRefGoogle Scholar
  29. (29).
    M. K. Tufail, R. Abdul-Karim, S. Rahim, S. G. Musharraf, and M. I. Malik, RSC Adv., 7, 41693 (2017).CrossRefGoogle Scholar
  30. (30).
    M. Rollet, D. Glé, T. N. T. Phan, Y. Guillaneuf, D. Bertin, and D. Gigmes, Macromolecules, 45, 7171 (2012).CrossRefGoogle Scholar
  31. (31).
    M. I. Malik and B. Trathnigg, J. Sep. Sci., 32, 1771 (2009).CrossRefGoogle Scholar
  32. (32).
    M. I. Malik, T. Mahboob, and S. Ahmed, Anal. Bioanal. Chem., 406, 6311 (2014).CrossRefGoogle Scholar
  33. (33).
    M. I. Malik, S. Lee, and T. Chang, J. Chromatogr. A, 1442, 33 (2016).CrossRefGoogle Scholar
  34. (34).
    J. Ahn, T. Chang, X. Wang, Z. Limpouchová, and K. Procházka, Macromolecules, 50, 8720 (2017).CrossRefGoogle Scholar
  35. (35).
    M. Irfan, J. Oh, S. G. Musharraf, M. R. Shah, S. Ahmed, and M. I. Malik, RSC Adv., 6, 98117 (2016).CrossRefGoogle Scholar
  36. (36).
    M. I. Malik, B. Trathnigg, and C. O. Kappe, Eur. Polym. J., 44, 144 (2008).CrossRefGoogle Scholar
  37. (37).
    T. Macko and D. Hunkeler, Adv. Polym. Sci., 163, 62 (2003).CrossRefGoogle Scholar
  38. (38).
    Y. Brun and P. Foster, J. Sep. Sci., 33, 3501 (2010).CrossRefGoogle Scholar
  39. (39).
    Y. Brun, J. Liq. Chromatogr. Relat Technol., 22, 3027 (1999).CrossRefGoogle Scholar
  40. (40).
    B. Trathnigg, Polymer, 46, 9211 (2005).CrossRefGoogle Scholar
  41. (41).
    M. I. Malik, B. Trathnigg, and C. O. Kappe, J. Chromatogr. A, 1216, 1167 (2009).CrossRefGoogle Scholar
  42. (42).
    M. I. Malik, G. W. Harding, M. E. Grabowsky, and H. Pasch, J. Chromatogr. A, 1244, 77 (2012).CrossRefGoogle Scholar
  43. (43).
    D. Berek, J. Sep. Sci., 39, 93 (2016).CrossRefGoogle Scholar
  44. (44).
    X. Yang, Y. Zhu, and Y. Wang, Polymer, 54, 3730 (2013).CrossRefGoogle Scholar
  45. (45).
    W. Lee, D. Cho, T. Chang, K. J. Hanley, and T. P. Lodge, Macromolecules, 34, 2353 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Rubina Abdul-Karim
    • 1
  • Syed Ghulam Musharraf
    • 1
  • Muhammad Imran Malik
    • 1
    Email author
  1. 1.H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS)University of KarachiKarachiPakistan

Personalised recommendations