Advertisement

Novel Hierarchically Porous Melamine-Vanillin Polymer: Synthesis and Application for the Pb(II) Ion Removal in Wastewater

  • Hong-Gyu Seong
  • Jihyeong Ryu
  • Yingjie Qian
  • Jae Il So
  • Sung-Hyeon Baeck
  • Sang Eun ShimEmail author
Article

Abstract

Water pollution due to heavy metal ions from factories causes serious threats as the heavy metal ions are inclined to accumulate in living systems threat ening their health. Adsorption is considered one of the most promising wastewater purification techniques for its simple operation and high effectiveness compared with other techniques. Accordingly, a novel cost-effective and environmentally benign porous melamine-vanillin polymer (MVP) was synthesized via Schiff-base formation reaction, which was utilized for the removal of Pb(II) ions. The MVP achieved a high surface area of 745 m2 g-1 with a hierarchically porous structure consisting of 1 nm and 3–50 nm pores. Effects of the contact time and the initial heavy metal concentration on the adsorption of Pb(II) were studied. Due to the copious functional groups and the hierarchical pore size distribution, MVP was found to exhibit a good adsorption performance toward Pb(II) ions. The adsorption process was well-fitted to the Langmuir adsorption isotherm and the pseudo-1st-order kinetic model.

Keywords

porous organic polymer vanillin hierarchically porous structure lead ion adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant number: NRF-2015R1A4A1042434).

References

  1. (1).
    B. Aguila, Q. Sun, J. A. Perman, L. D. Earl, C. W. Abney, R. Elzein, R. Schlaf, and S. Ma, Adv. Mater., 29, 1700665 (2017).CrossRefGoogle Scholar
  2. (2).
    R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. v. Gunten, and B. Wehrli, Science, 313, 1072 (2006).CrossRefGoogle Scholar
  3. (3).
    M. X. Tan, Y. N. Sun, J. Y. Ying, and Y. Zhang, Energy Environ. Sci., 6, 3254 (2013).CrossRefGoogle Scholar
  4. (4).
    P. A. Meyer, M. J. Brown, and H. Falk, Mutat. Res., 659, 166 (2008).CrossRefGoogle Scholar
  5. (5).
    M. M. Matlock, B. S. Howerton, and D. A. Atwood, J. Hazard. Mater., B84, 73 (2001).CrossRefGoogle Scholar
  6. (6).
    R. S. Hebbar, A. M. Isloor, K. Ananda, and A. F. Ismail, J. Mater. Chem. A, 4, 764 (2016).CrossRefGoogle Scholar
  7. (7).
    D. Pathania, G. Sharma, and R. Thakur, Chem. Eng. J., 267, 235 (2015).CrossRefGoogle Scholar
  8. (8).
    Z. Li, D. Xiao, Y. Ge, and S. Koehler, ACS Appl. Mater. Interfaces, 7, 15000 (2015).CrossRefGoogle Scholar
  9. (9).
    W. Yin, D. Dai, J. Hou, S. Wang, X. Wu, and X. Wang, Appl. Surf. Sci., 465, 297 (2019).CrossRefGoogle Scholar
  10. (10).
    J. Peric, M. Trgo, and N. V. Medvidovic, Water Res., 38, 1893 (2004).CrossRefGoogle Scholar
  11. (11).
    M. Sekar, V. Sakthi, and S. Rengaraj, J. Colloid Surf. Sci., 279, 307 (2004).CrossRefGoogle Scholar
  12. (12).
    G. Yang, L. Tang, G. Zeng, Y. Cai, J. Tang, Y. Pang, Y. Zhou, Y. Liu, J. Wang, S. Zhang, and W. Xiong, Chem. Eng, J., 259, 854 (2015).CrossRefGoogle Scholar
  13. (13).
    J. Gu, S. Yuan, W. Shu, W. Jiang, S. Tang, B. Liang, and S. O. Pehkonen, Colloid Surf. A, 498, 218 (2016).CrossRefGoogle Scholar
  14. (14).
    S. Deng, P. Wang, G. Zhang, and Y. Dou, J. Hazard. Mater., 307, 64 (2016).CrossRefGoogle Scholar
  15. (15).
    M. Fayazi, M. A. Taher, D. Afzali, A. Mostafavi, and M. Ghanei-Motlagh, Mater. Sci. Eng. C, 60, 365 (2016).CrossRefGoogle Scholar
  16. (16).
    A. Gupta, R. Jain, and D. C. Gupta, React. Fucnt. Polym., 93, 22 (2015).CrossRefGoogle Scholar
  17. (17).
    L. Chu, C. Liu, G. Zhou, R. Xu, Y. Tang, Z. Zeng, and S. Luo, J. Hazard. Mater., 300, 153 (2015).CrossRefGoogle Scholar
  18. (18).
    J. Y. Jung, S. H. Ko, S. L. Park, H. H. Shin, H. C. Oh, J. W. Ryu, S. C. Lee, O. P. Kwon, and E. Y. Choi, Macromol. Res., 25, 1100 (2017).CrossRefGoogle Scholar
  19. (19).
    L. Pan, Z. Chen, W. Deng, G. Yang, and X. Liu, Macromol. Res., 24, 366 (2016).CrossRefGoogle Scholar
  20. (20).
    W. Dong, X. Zhang, Y. Liu, Q. Wang, H. Gui, J. Gao, Z. Song, J. Lai, F. Huang, J. Qiao, Polymer, 47, 6874 (2006).CrossRefGoogle Scholar
  21. (21).
    Q. Fang, D. Yuan, J. Sculley, J. Li, Z. Han, and H. Zhou, Inorg. Chem., 49, 11637 (2010).CrossRefGoogle Scholar
  22. (22).
    H. Peng, H. Xiong, J. Li, M. Xie, Y. Liu, C. Bai, and L. Chen, Food Chem., 121, 23 (2010).CrossRefGoogle Scholar
  23. (23).
    E. J. Tenailleau, P. Lancelin, R. J. Robins, and S. Akoka, J. Agric. Food Chem., 52, 7782 (2004).CrossRefGoogle Scholar
  24. (24).
    S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938).CrossRefGoogle Scholar
  25. (25).
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985).CrossRefGoogle Scholar
  26. (26).
    M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng, and K. Mullen, J. Am. Chem. Soc., 131, 7216 (2009).CrossRefGoogle Scholar
  27. (27).
    E. H. Cordes and W. P. Jencks, J. Am. Chem. Soc., 84, 832 (1961).CrossRefGoogle Scholar
  28. (28).
    A. Laybourn, R. Dawson, R. Clowes, J. A. Ig go, A. I. Cooper, Y. Z. Khimyak, and D. J. Adams, Polym. Chem., 3, 533 (2012).CrossRefGoogle Scholar
  29. (29).
    T. N. Moja, N. Bunekar, S. Mojaki, S. B. Mishra, T. Y. Tasi, S. S. Hwang, and A. K. Mishra, J. Inorg. Organomet. Polym. Mater., 28, 2799 (2018).CrossRefGoogle Scholar
  30. (30).
    R. Dongre, M. Thakur, D. Ghugal, and J. Meshram, Bull. Mater. Sci., 35, 875 (2012).CrossRefGoogle Scholar
  31. (31).
    H. Ren, Z. Gao, D. Wu, J. Jiang, Y. Sun, and C. Luo, Carbohydr. Polym., 137, 402 (2016).CrossRefGoogle Scholar
  32. (32).
    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  33. (33).
    H. M. F. Freundlich, J. Phys. Chem., 57, 385 (1906).Google Scholar
  34. (34).
    S. Azizian, J. Colloid Interf. Sci., 276, 47 (2004).CrossRefGoogle Scholar
  35. (35).
    W. Plazinski, W. Rudzinski, and A. Plazinska, Adv. Colloid Interf. Sci., 152, 2 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Hong-Gyu Seong
    • 1
  • Jihyeong Ryu
    • 1
  • Yingjie Qian
    • 1
  • Jae Il So
    • 1
  • Sung-Hyeon Baeck
    • 1
  • Sang Eun Shim
    • 1
    Email author
  1. 1.Department of Chemistry & Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations