Macromolecular Research

, Volume 27, Issue 7, pp 686–692 | Cite as

Reversible Addition-Fragmentation Chain Transfer Polymerization of 2-Chloroethyl Methacrylate and Post-Polymerization Modification

  • Anchao FengEmail author
  • Houliang Tang
  • Yi LuanEmail author


An alkyl halide containing monomer, 2-chloroethyl methacrylate (CEMA) was synthesized via the chorination of 2-hydroethyl methacryalte and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The kinetics of the controlled/living radical polyemrization (CRP) was systematically investigated. The chain end livingness of poly(2-chloroethyl methacrylate) (PCEMA) was confirmed by the chain extension with methyl methacrylate (MMA) under RAFT polymerization conditions. PCEMA with dangling alkyl chloride groups was directly azidated through a nucleophilic substitution with sodium azide, affording a polymer with an azido group at each repeating unit. The resulting polymer was readily available for post-polymerization modifications by various click reactions. These strategies may open new perspectives toward more effective and milder conditions for azide involving reactions.


alkyl halide RAFT polymerization azidation post-polymerization modification click chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7118_MOESM1_ESM.pdf (964 kb)
Supplementary material, approximately 963 KB.


  1. (1).
    J. F. Lutz, Angew. Chem. Int. Ed., 46, 1018 (2017).CrossRefGoogle Scholar
  2. (2).
    M. Meldal and C. W. Tornøe, Chem. Rev., 108, 2952 (2018).CrossRefGoogle Scholar
  3. (3).
    P. L. Golas, and K. Matyjaszewski, Chem. Soc. Rev., 39, 1338 (2010).CrossRefGoogle Scholar
  4. (4).
    H. C. Kolb, M. G. Finn, and K. B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001).CrossRefGoogle Scholar
  5. (5).
    W. Xi, T. F. Scott, C. J. Kloxin, and C. N. Bowman, Adv. Funct. Mater., 24, 2572 (2014).CrossRefGoogle Scholar
  6. (6).
    X. Du, X. Li, H. Tang, W. Wang, D. Ramella, and Y. Luan, New J. Chem., 42, 12722 (2018).CrossRefGoogle Scholar
  7. (7).
    Z. Miao, Z. Zhou, H. Tang, M. Yu, D. Ramella, X. Du, and Y. Luan, Catal. Sci. Technol., 8, 3406 (2018).CrossRefGoogle Scholar
  8. (8).
    H. Tang, and N. V. Tsarevsky, Polym. Chem., 6, 6936 (2015).CrossRefGoogle Scholar
  9. (9).
    K. L. Killops, L. M. Campos, and C. J. Hawker, J. Am. Chem. Soc., 130, 5062 (2008).CrossRefGoogle Scholar
  10. (10).
    C. J. Hawker, V. V. Fokin, M. G. Finn, and K. B. Sharpless, Aust. J. Chem., 60, 381 (2007).CrossRefGoogle Scholar
  11. (11).
    B. Liu, H. Zhou, S. Zhou, H. Zhang, A. Feng, C. Jian, J. Hu, W. Gao, and J. Yuan, Macromolecules, 9, 2938 (2014).CrossRefGoogle Scholar
  12. (12).
    B. S. Sumerlin and A. P. Vogt, Macromolecules, 43, 1 (2010).CrossRefGoogle Scholar
  13. (13).
    H. Tang and N. V. Tsarevsky, J. Polym. Sci. Part A: Polym. Chem., 54, 3683 (2016).CrossRefGoogle Scholar
  14. (14).
    H. Cheradame, J. De la Croix Habimana, E. Rousset, and F. Chen, Makromol. Chem., 192, 2777 (1991).CrossRefGoogle Scholar
  15. (15).
    B. S. Sumerlin, N. V. Tsarevsky, G. Louche, R. Y. Lee, and K. Matyjaszewski, Macromolecules, 38, 7540 (2005).CrossRefGoogle Scholar
  16. (16).
    Y. Li, J. Yang, and B. C. Benicewicz, J. Polym. Sci. Part A: Polym. Chem., 45, 4300 (2007).CrossRefGoogle Scholar
  17. (17).
    S. Braese, C. Gil, K. Knepper, and V. Zimmermann, Angew. Chem. Int. Ed., 44, 5188 (2005).CrossRefGoogle Scholar
  18. (18).
    M. Takeishi and M. Okawara, J. Polym. Sci. Polym. Lett. Ed., 7, 201 (1969).CrossRefGoogle Scholar
  19. (19).
    T. Iizawa, T. Nishikubo, Y. Masuda, and M. Okawara, Macromolecules, 17, 992 (1984).CrossRefGoogle Scholar
  20. (20).
    W. R. Roush, D. Feitler, and J. Rebek, Tetrahedron Lett., 15, 1391 (1974).CrossRefGoogle Scholar
  21. (21).
    K. Schuh, O. Prucker, and J. Ruehe, Macromolecules, 41, 9284 (2008).CrossRefGoogle Scholar
  22. (22).
    T. Nishikubo, T. Iizawa, N. Numazaki, and M. Okawara, Makromol. Chem. Rapid Commun., 4, 187 (1983).CrossRefGoogle Scholar
  23. (23).
    R. K. O’Reilly, M. J. Joralemon, K. L. Wooley, and C. J. Hawker, Chem. Mater., 17, 5976 (2005).CrossRefGoogle Scholar
  24. (24).
    N. V. Tsarevsky, S. A. Bencherif, and K. Matyaszewski, Macromolecules, 40, 4439 (2007).CrossRefGoogle Scholar
  25. (25).
    P. D. Topham, N. Sandon, E. S. Read, J. Madsen, A. J. Ryan, and S. P. Armes, Macromolecules, 41, 9542 (2008).CrossRefGoogle Scholar
  26. (26).
    H. Han and N. V. Tsarevsky, Chem. Sci., 5, 4599 (2014).CrossRefGoogle Scholar
  27. (27).
    W. A. Braunecker, and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007).CrossRefGoogle Scholar
  28. (28).
    Z. Li, H. Tang, A. Feng, S. H. Thang, Prog. Chem., 30, 1097 (2018).Google Scholar
  29. (29).
    L. Yang, H. Tang, and H. Sun, Micromachines, 9, 296 (2018).CrossRefGoogle Scholar
  30. (30).
    C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001).CrossRefGoogle Scholar
  31. (31).
    K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001).CrossRefGoogle Scholar
  32. (32).
    K. Matyjaszewski and N. V. Tsarevsky, Nat. Chem., 1, 276 (2009).CrossRefGoogle Scholar
  33. (33).
    H. Sun, C. P. Kabb, Y. Dai, M. R. Hill, I. Ghiviriga, A. P. Bapat, and B. S. Sumerlin, Nat. Chem., 9, 817 (2017).CrossRefGoogle Scholar
  34. (34).
    H. Sun, C. P. Kabb, and B. S. Sumerlin, Chem. Sci., 5, 4646 (2014).CrossRefGoogle Scholar
  35. (35).
    G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem., 62, 1402 (2009).CrossRefGoogle Scholar
  36. (36).
    A. Gregory and M. H. Stenzel, Prog. Polym. Sci., 37, 38 (2012).CrossRefGoogle Scholar
  37. (37).
    A. Feng, C. Zhan, Q. Yan, B. Liu, and J. Yuan, Chem. Commun., 64, 8958 (2014).CrossRefGoogle Scholar
  38. (38).
    K. A. Cimatu, S. C. Chan, J. H. Jang, and K. Hafer, J. Phys. Chem. C, 119, 25327 (2015).CrossRefGoogle Scholar
  39. (39).
    B. M. Blunden, D. S. Thomas, and M. H. Stenzel, Polym. Chem., 3, 2964 (2012).CrossRefGoogle Scholar
  40. (40).
    Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Polym. Eng. Sci., 52, 768 (2012).CrossRefGoogle Scholar
  41. (41).
    A. W. Snow, J. Polym. Sci. Part A: Polym. Chem., 55, 93 (2017).CrossRefGoogle Scholar
  42. (42).
    T. Ishikawa, A. Takenaka, M. Kikuchi, M. Kobayashi, and A. Takahara, Macromolecules, 46, 9189 (2013).CrossRefGoogle Scholar
  43. (43).
    C. Chen, X. Guo, J. Du, B. Choi, H. Tang, A. Feng, and S. H. Thang, Polym. Chem., 10, 228 (2019).CrossRefGoogle Scholar
  44. (44).
    A. Thomas, K. Niederer, F. Wurm, and H. Frey, Polym. Chem., 5, 899 (2014).CrossRefGoogle Scholar
  45. (45).
    R. Appel, Angew. Chem. Int. Ed., 14, 801 (1975).CrossRefGoogle Scholar
  46. (46).
    H. Sun, C. P. Kabb, M. B. Sims, and B. S. Sumerlin, Prog. Polym. Sci.. (2018).Google Scholar
  47. (47).
    H. Tang, W. Zhao, J. Yu, Y. Li, and C. Zhao, Molecules, 24, 4 (2019).CrossRefGoogle Scholar
  48. (48).
    H. Tang, Y. Luan, L. Yang, and H. Sun, Molecules, 23, 2870 (2018).CrossRefGoogle Scholar
  49. (49).
    S. H. Thang, R. T. Mayadunne, G. Moad, and E. Rizzardo, Tetrahedron Lett., 40, 2435 (1999).CrossRefGoogle Scholar
  50. (50).
    J. Zhao, W. Wang, H. Tang, D. Ramella, and Y. Luan, Mol. Catal., 456, 57 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
  2. 2.Department of ChemistrySouthern Methodist UniversityDallasUSA
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingP. R. China

Personalised recommendations