Effects of Diamines on the Optical Properties of Poly(ether imide)s Derived from 2,2-Bis[4-(3,4-dicarboxyphenoxy)phenyl]propane Dianhydride (BPADA)

  • Linshuang Li
  • Yong XuEmail author
  • Jianfei Che
  • Xiaohong Liu
  • Wei Zhao
  • Zhifeng Ye


The objective of this study was to investigate the effects of diamines with ether group or/and trifluoromethyl (-CF3) group on the optical properties of polyimides. A series of poly(ether imide)s (PEIs) (III) were prepared from 2,2-bis[4-(3,4-dicarboxyphenoxy) phenyl]propane dianhydride (BPADA) with various aromatic diamines (Ia-h) including non-fluorinated diamines (Ia-d) and the corresponding trifluoromethyl-substituted diamines (Ie-h). The fluorinated PEIs IIIe-h based on fluorinated diamines were nearly colorless with cutoff absorption wavelength (λ0) below 370 nm and with solubility higher than that of the corresponding CF3-free analogues (IIIa-d). Meanwhile, they had lower dielectric constants in the range of 2.91–3.21 at 1 MHz coupled with water absorptions below 0.70% and contact angles against water beyond 108°. The III series had tensile strength of 84.3–94.4 MPa, modulus of elasticity of 3.6–8.9 GPa and elongation at break of 9.4–25.3%, together with temperatures of 5% weight loss (T5%) beyond 510 °C. Compared to the IV series based on 4,4-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), the corresponding III series exhibited better thermal and mechanical properties coupled with good optical properties, especially the fluorinated PEIs IIIe-h.


poly(ether imide)s fluorinated diamines optical properties dielectric constants. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. (1).
    X. Su, Y. Xu, L. Li, and C. Song, High Perform. Polym., 30, 787 (2018).CrossRefGoogle Scholar
  2. (2).
    S. J. Lee, M.-C. Choi, S. S. Park, and C.-S. Ha, Macromol. Res., 19, 599 (2011).CrossRefGoogle Scholar
  3. (3).
    Q. Zhang, Y. Xu, Y. Yang, L. Li, C. Song, and X. Su, J. Polym. Eng., 38, 147 (2018).CrossRefGoogle Scholar
  4. (4).
    K. Abe, D. Nagao, A. Watanabe, and K. Mikio, Polym. Int., 62, 141 (2013).CrossRefGoogle Scholar
  5. (5).
    Y. Xu, A. Zhao, X. Wang, H. Xue, and F. Liu, J. Wuhan University of Technology-Mater. Sci. Ed., 31, 1137 (2016).CrossRefGoogle Scholar
  6. (6).
    L. Tao, H. Yang, J. Liu, L. Fan, and S. Yang, Polymer, 50, 6009 (2009).CrossRefGoogle Scholar
  7. (7).
    C.-P. Yang, Y.-Y Su, S.-J. Wen, and S.-H. Hsiao, Polymer, 47, 7021 (2006).CrossRefGoogle Scholar
  8. (8).
    R. A. Dine-Hart and W. W. Wright, Macromol. Chem. Phys., 143, 189 (1971).CrossRefGoogle Scholar
  9. (9).
    S. Ando, T. Matsuura, and S. Sasaki, Polym. J., 29, 69 (1997).CrossRefGoogle Scholar
  10. (10).
    Y.-Y. Chen, C.-P. Yang, and S.-H. Hsiao, Eur. Polym. J., 42, 1705 (2006).CrossRefGoogle Scholar
  11. (11).
    X. Wang, F. Liu, J. Lai, Z. Fu, and X. You, J. Fluorine Chem., 164, 27 (2014).CrossRefGoogle Scholar
  12. (12).
    S. Bong, H. Yeo, M. Goh, B.-C. Ku, Y. Y. Kim, P.-H. Bong, B. Park, and N.-H. You, Macromol. Res., 24, 1091 (2006).CrossRefGoogle Scholar
  13. (13).
    D.-H. Lee, S.-Y. Koo, D.-Y. Kim, and H.-J. Choi, J. Appl. Polym. Sci., 76, 249 (2000).CrossRefGoogle Scholar
  14. (14).
    C.-P. Yang, Y.-Y. Su, and H.-C. Chiang, React. Funct. Polym., 66, 689 (2006).CrossRefGoogle Scholar
  15. (15).
    Z. Ge, L. Fan, and S. Yang, Eur. Polym. J., 44, 1252 (2008).CrossRefGoogle Scholar
  16. (16).
    T. Matsumoto and T. Kurosaki, React. Funct. Polym., 30, 55 (1996).CrossRefGoogle Scholar
  17. (17).
    Y.-Z. Guo, D.-X. Shen, H.-J. Ni, J.-G. Liu, and S.-Y. Yang, Prog. Org. Coat., 76, 768 (2013).CrossRefGoogle Scholar
  18. (18).
    P. K. Tapaswi, M.-C. Choi, Y. S. Jung, H. J. Choi, D. J. Seo, and C.-S. Ha, J. Polym. Sci. Part A: Polym. Chem., 52, 2316 (2014).CrossRefGoogle Scholar
  19. (19).
    W. Jang, H.-S. Lee, S. Lee, S. Choi, D. Shin, and H. Han, Mater. Chem. Phys., 104, 342 (2007).CrossRefGoogle Scholar
  20. (20).
    S.-H. Hsiao, C.-L. Chung, and M.-L. Lee, J. Polym. Sci. Part A: Polym. Chem., 42, 1008 (2004).CrossRefGoogle Scholar
  21. (21).
    V. Kute and S. Banerjee, Macromol. Chem. Phys., 204, 2105 (2003).CrossRefGoogle Scholar
  22. (22).
    J. O. Simpson and A. K. St. Clair, Thin Solid Films, 308, 480 (1997).CrossRefGoogle Scholar
  23. (23).
    C.-S. Wang and R.-W. Yang, J. Appl. Polym. Sci., 66, 609 (1997).CrossRefGoogle Scholar
  24. (24).
    C.-P. Yang, Y.-Y. Su, and Y.-C. Chen, Eur. Polym. J., 42, 721 (2006).CrossRefGoogle Scholar
  25. (25).
    W. Jang, D. Shin, S. Choi, S. Park, and H. Han, Polymer, 48, 2130 (2007).CrossRefGoogle Scholar
  26. (26).
    T. Ma, S. Zhang, Y. Li, F. Yang, C. Gong, and J. Zhao, J. Fluorine Chem., 131, 724 (2010).CrossRefGoogle Scholar
  27. (27).
    A. K. St. Clair, T. L. St. Clair, and K. I. Shevket, J. Polym. Mater. Sci. Eng., 51, 62 (1984).Google Scholar
  28. (28).
    L. Li, Y. Xu, J. Che, X. Su, C. Song, and X. Ma, Macromol. Res., 25, 1076 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Linshuang Li
    • 1
  • Yong Xu
    • 1
    Email author
  • Jianfei Che
    • 1
  • Xiaohong Liu
    • 1
  • Wei Zhao
    • 1
  • Zhifeng Ye
    • 1
  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingP. R. China

Personalised recommendations