Advertisement

A pH-Sensitive Polymer for Cancer Targeting Prepared by One-Step Modulation of Functional Side Groups

  • Taehoon Sim
  • Sang Myung Han
  • Chaemin Lim
  • Woong Roeck Won
  • Eun Seong Lee
  • Yu Seok Youn
  • Kyung Taek OhEmail author
Article
  • 1 Downloads

Abstract

Nanocarriers with pH-sensitive functionality are of great interest in the development of pH-dependent drug release compounds in acidic tumor microenvironments. A new polyelectrolyte block copolymer, poly[(benzyl-L-aspartate)-co-(N-(3-aminopropyl) imidazole-L-aspartamide)]-poly(ethylene glycol) (PABI-PEG), was prepared by one-step modulation to produce pH-sensitive nanocarriers. PABI-PEG formed a stable nanocarrier at pH values above 7.4 and was destabilized in acidic conditions (pH 6.5) through the protonation of the imidazole groups. Docetaxel loaded micelle (DLM) exhibited pH-dependent drug release through structural conversion due to the protonation of the imidazole groups on the PABI block. The critically low micelle concentration of PABI-PEG at physiological pH and the pH-dependent drug release would result to high stability and restrict drug loss during systemic circulation which may lower the toxicity of normal tissue to physiological pH. Additionally, the extracellular tumor pH (<7.0) and early endosomal pH (<6.5) environments triggered the disintegration of micelles, producing higher drug release compared to other normal tissues and blood (pH 7.4). Therefore, PABI-PEG may be a pHsensitive drug delivery method for cancer chemotherapy.

Keywords

pH sensitive polymer modulation nanocarrier cancer targeting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This research was supported by a grant (16173MFDS542) from the Ministry of Food and Drug Safety in 2019 and by a Chung-Ang University Research Scholarship Grant in 2018.

Supplementary material

13233_2019_7112_MOESM1_ESM.pdf (137 kb)
Supplementary material, approximately 136 KB.

References

  1. (1).
    A. S. Hoffman, Artif. Organs, 19, 458 (1995).CrossRefGoogle Scholar
  2. (2).
    B. Jeong and A. Gutowska, Trends Biotechnol., 20, 305 (2002).CrossRefGoogle Scholar
  3. (3).
    M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nat. Mater., 9, 101 (2010).CrossRefGoogle Scholar
  4. (4).
    T. Ramasamy, H. B. Ruttala, B. Gupta, B. K. Poudel, H.-G. Choi, C. S. Yong, and J. O. Kim, J. Control. Release, 258, 226 (2017).CrossRefGoogle Scholar
  5. (5).
    E.-K. Lim, B. H. Chung, and S. Chung, Curr. Drug Targets, 19, 300 (2018).CrossRefGoogle Scholar
  6. (6).
    T. Sim, C. Lim, N. H. Hoang, and K. T. Oh, J. Pharm. Investig., 47, 383 (2017).CrossRefGoogle Scholar
  7. (7).
    J. H. Choi, Y. J. Lee, and D. Kim, J. Pharm. Investig., 47, 51 (2017).CrossRefGoogle Scholar
  8. (8).
    Y. H. Choi and H.-K. Han, J. Pharm. Investig., 48, 43 (2018).CrossRefGoogle Scholar
  9. (9).
    X. Ma and R. O. Williams, J. Pharm. Investig., 48, 61 (2018).Google Scholar
  10. (10).
    Q.-V. Le, J. Choi, and Y.-K. Oh, J. Pharm. Investig., 48, 527 (2018).CrossRefGoogle Scholar
  11. (11).
    T. Sim, C. Lim, N. H. Hoang, H. Joo, J. W. Lee, D.-W. Kim, E. S. Lee, Y. S. Youn, J. O. Kim, and K. T. Oh, J. Pharm. Investig., 46, 351 (2016).CrossRefGoogle Scholar
  12. (12).
    E. Cabane, X. Zhang, K. Langowska, C. G. Palivan, and W. Meier, Biointerphases, 7, 9 (2012).CrossRefGoogle Scholar
  13. (13).
    I. Y. Galaev and B. Mattiasson, Trends Biotechnol., 17, 335 (1999).CrossRefGoogle Scholar
  14. (14).
    A. Kumar, A. Srivastava, I. Y. Galaev, and B. Mattiasson, Prog. Polym. Sci., 32, 1205 (2007).CrossRefGoogle Scholar
  15. (15).
    Y. Osada and J. Gong, Prog. Polym. Sci., 18, 187 (1993).CrossRefGoogle Scholar
  16. (16).
    J. J. Li, F. Zhao, and J. Li, Adv. Biochem. Eng. Biotechnol., 125, 207 (2011).Google Scholar
  17. (17).
    B. Priya, P. Viness, E. C. Yahya, and C. d. T. Lisa, Biomed. Mater., 4, 022001 (2009).CrossRefGoogle Scholar
  18. (18).
    C. Lim, Y. S. Youn, K. S. Lee, N. H. Hoang, T. Sim, E. S. Lee, and K. T. Oh, Int. J. Nanomed., 11, 703 (2016).Google Scholar
  19. (19).
    T. Sim, G. Park, H. Min, S. Kang, C. Lim, S. Bae, E. S. Lee, Y. S. Youn, and K. T. Oh, J. Bioact. Compat. Pol., 32, 280 (2016).CrossRefGoogle Scholar
  20. (20).
    H.-T. Song, N. H. Hoang, J. M. Yun, Y. J. Park, E. H. Song, E. S. Lee, Y. S. Youn, and K. T. Oh, Colloid. Surface B, 144, 73 (2016).CrossRefGoogle Scholar
  21. (21).
    C. Lim, T. Sim, N. H. Hoang, and K. T. Oh, Colloid. Surface B, 153, 10 (2017).CrossRefGoogle Scholar
  22. (22).
    E. S. Lee, Z. Gao, D. Kim, K. Park, I. C. Kwon, and Y. H. Bae, J. Control. Release, 129, 228 (2008).CrossRefGoogle Scholar
  23. (23).
    J. H. Kim, Y. T. Oh, K. S. Lee, J. M. Yun, B. T. Park, and K. T. Oh, Macromol. Res., 19, 453 (2011).CrossRefGoogle Scholar
  24. (24).
    E.-S. Lee, J.-H. Kim, J.-M. Yun, K.-S. Lee, G.-Y. Park, B.-J. Lee, and K.-T. Oh, J. Pharm. Investig., 40, 45 (2010).CrossRefGoogle Scholar
  25. (25).
    E. S. Lee, K. Na, and Y. H. Bae, J. Control. Release, 103, 405 (2005).CrossRefGoogle Scholar
  26. (26).
    E. S. Lee, K. Na, and Y. H. Bae, Nano Lett., 5, 325 (2005).CrossRefGoogle Scholar
  27. (27).
    K. T. Oh, H. Yin, E. S. Lee, and Y. H. Bae, J. Mater. Chem., 17, 3987 (2007).CrossRefGoogle Scholar
  28. (28).
    D. Schmaljohann, Adv. Drug Deliv. Rev., 58, 1655 (2006).CrossRefGoogle Scholar
  29. (29).
    L. Tian and Y. H. Bae, Colloid. Surface B, 99, 116 (2012).CrossRefGoogle Scholar
  30. (30).
    J. Kim, Y. Oh, K. Lee, J. Yun, B. Park, and K. Oh, Macromol. Res., 19, 453 (2011).CrossRefGoogle Scholar
  31. (31).
    E. S. Lee, J. H. Kim, T. Sim, Y. S. Youn, B.-J. Lee, Y. T. Oh, and K. T. Oh, J. Mater. Chem. B, 2, 1152 (2014).CrossRefGoogle Scholar
  32. (32).
    T. Sim, C. Lim, N. H. Hoang, J. E. Kim, E. S. Lee, Y. S. Youn, and K. T. Oh, J. Mater. Chem. B, 5, 8498 (2017).CrossRefGoogle Scholar
  33. (33).
    T. Sim, C. Lim, Y. H. Cho, E. S. Lee, Y. S. Youn, and K. T. Oh, J. Appl. Polym. Sci., 135, 46268 (2018).CrossRefGoogle Scholar
  34. (34).
    S. Zalipsky and G. Barany, J. Bioact. Compat. Pol., 5, 227 (1990).CrossRefGoogle Scholar
  35. (35).
    K. Yoon, H. C. Kang, L. Li, H. Cho, M.-K. Park, E. Lee, Y. H. Bae, and K. M. Huh, Polym. Chem-UK, 6, 531 (2015).CrossRefGoogle Scholar
  36. (36).
    M. Nakanishi, J.-S. Park, W.-D. Jang, M. Oba, and K. Kataoka, React. Funct. Polym., 67, 1361 (2007).CrossRefGoogle Scholar
  37. (37).
    E. A. Lysenko, T. K. Bronich, E. V. Slonkina, A. Eisenberg, V. A. Kabanov, and A. V. Kabanov, Macromolecules, 35, 6351 (2002).CrossRefGoogle Scholar
  38. (38).
    J. Aguiar, P. Carpena, J. Molina-Bolivar, and C. C. Ruiz, J, Colloid Interf. Sci., 258, 116 (2003).CrossRefGoogle Scholar
  39. (39).
    K. Kalyanasundaram and J. Thomas, J. Am. Chem. Soc., 99, 2039 (1977).CrossRefGoogle Scholar
  40. (40).
    E. S. Lee, D. Kim, Y. S. Youn, K. T. Oh, and Y. H. Bae, Angew. Chem. Int. Ed. Engl., 47, 2418 (2008).CrossRefGoogle Scholar
  41. (41).
    M. Lee, N. Oh, K. Oh, Y. Youn, and E. Lee, J. Pharm. Investig., 44, 351 (2014).CrossRefGoogle Scholar
  42. (42).
    S. Kooijmans, L. Fliervoet, R. Van Der Meel, M. Fens, H. Heijnen, P. v. B. e. Henegouwen, P. Vader, and R. Schiffelers, J. Control. Release, 224, 77 (2016).CrossRefGoogle Scholar
  43. (43).
    P. L. Turecek, M. J. Bossard, F. Schoetens, and I. A. Ivens, J, Pharm. Sci., 105, 460 (2016).CrossRefGoogle Scholar
  44. (44).
    N. M. Oh, K. T. Oh, Y. S. Youn, D. K. Lee, K. H. Cha, D. H. Lee, and E. S. Lee, Colloid. Surface B, 101, 298 (2013).CrossRefGoogle Scholar
  45. (45).
    S. Pal and S. Moulik, J. Lipid. Res., 24, 1281 (1983).Google Scholar
  46. (46).
    E. S. Lee, K. Na, and Y. H. Bae, J. Control. Release, 91, 103 (2003).CrossRefGoogle Scholar
  47. (47).
    G. M. Kim, Y. H. Bae, and W. H. Jo, Macromol. Biosci., 5, 1118 (2005).CrossRefGoogle Scholar
  48. (48).
    Y. H. Choi and H.-K. Han, J. Pharm. Investig., 1 (2018).Google Scholar
  49. (49).
    C.-Y. Su, J.-J. Liu, Y.-S. Ho, Y.-Y. Huang, V. H.-S. Chang, D.-Z. Liu, L.-C. Chen, H.-O. Ho, and M.-T. Sheu, Biopharmaceutics, 123, 9 (2018).Google Scholar
  50. (50).
    T. Sim, J. E. Kim, N. H. Hoang, J. K. Kang, C. Lim, D. S. Kim, E. S. Lee, Y. S. Youn, H.-G. Choi, and H.-K. Han, Drug Deliv., 25, 1362 (2018).CrossRefGoogle Scholar
  51. (51).
    Y. Shi, M. J. va. Steenbergen, E. A. Teunissen, L. S. Novo, S. Gradmann, M. Baldus, C. F. va. Nostrum, and W. E. J. B. Hennink, Biomacromolecules, 14, 1826 (2013).CrossRefGoogle Scholar
  52. (52).
    C. Lim, J. Moon, T. Sim, N. H. Hoang, W. R. Won, E. S. Lee, Y. S. Youn, H.-G. Choi, K. Oh, and K. T. Oh, Int. J. Nanomed., 13, 4627 (2018).CrossRefGoogle Scholar
  53. (53).
    M. S. Muthu, R. V. Kutty, Z. Luo, J. Xie, and S.-S. Feng, Biomaterials, 39, 234 (2015).CrossRefGoogle Scholar
  54. (54).
    T. Ramasamy, J. Y. Choi, H. J. Cho, S. K. Umadevi, B. S. Shin, H. G. Choi, C. S. Yong, and J. O. Kim, Pharm. Res., 32, 1947 (2015).CrossRefGoogle Scholar
  55. (55).
    C.-Y. Su, J.-J. Liu, Y.-S. Ho, Y.-Y. Huang, V. H.-S. Chang, D.-Z. Liu, L.-C. Chen, H.-O. Ho, and M.-T. Sheu, Eur. J. Pharm. Biopharm., 123, 9 (2018).CrossRefGoogle Scholar
  56. (56).
    O. S. Qureshi, H.-S. Kim, A. Zeb, J.-S. Choi, H.-S. Kim, J.-E. Kwon, M.-S. Kim, J.-H. Kang, C. Ryou, J.-S. Park, and J.-K. Kim, J. Microencapsul., 34, 250 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Taehoon Sim
    • 1
  • Sang Myung Han
    • 1
  • Chaemin Lim
    • 1
  • Woong Roeck Won
    • 1
  • Eun Seong Lee
    • 2
  • Yu Seok Youn
    • 3
  • Kyung Taek Oh
    • 1
    Email author
  1. 1.College of PharmacyChung-Ang UniversitySeoulKorea
  2. 2.Department of BiotechnologyThe Catholic University of KoreaBucheon, GyeonggiKorea
  3. 3.School of PharmacySungkyunkwan UniversitySuwon, GyeonggiKorea

Personalised recommendations