The Synthesis of New Type II Polymeric Photoinitiator (thioxantone) via Atom Transfer Radical Polymerization and Their Curing and Migration Studies

  • Emine Arman Kandirmaz
  • Efe N. Gençoğlu
  • Nilhan Kayaman ApohanEmail author


Polymeric photoinitiators are widely used in ultraviolet (UV)-curable printing inks because of their low migration behavior. In this study, a new phenylphosphine oxide-polystyrene-thioxanthone (PPO-PSt-TX) polymeric photoinitiator was synthesized. Bis[(4-hydroxy)phenyl]phenyl phosphine oxide (BHPPO) that was synthesized by Grignard technique, was functionalized with 2-bromopropionyl bromide (atom transfer radical polymerization (ATRP) initiator) and then used in styrene polymerization. The bromine end-capped polystyrene was then reacted with 2-thioxanthone-thioacetic acid and final polymeric photoinitiator PPO-PSt-TX was obtained. Proton nuclear magnetic resonance (1H NMR), attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR), gel permeation chromatography (GPC) and ultraviolet-visible spectroscopy (UV-Vis) confirmed the obtained structure. The curing characteristic of PPO-PSt-TX was compared with a standard flexographic printing varnish formulation containing thioxanthone (TX). The photopolymerization kinetics were determined by photo differential scanning calorimetry (Photo-DSC). The conversion of methylmethacrylate polymerization by using macrophotoinitiator is 78%. The migration behavior of PPO-PSt-TX was identified with liquid chromatography-mass spectrometry (LC-MS). It was shown that PPOPSt- TX macro photoinitiator is suitable for flexographic varnish and the migration level of photoinitiator is reduced by using polymeric photoinitiator.


polymeric photoinitiator photopolymerization thioxanthone migration flexographic varnish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Marmara University, Commission of Scientific Research Project (M.U.BAPKO) under grant FEN-CDRP- 120514-0163. The authors would like to thank Prof.Dr. Duygu Avcı for their valuable help in photo DSC studies.


  1. (1).
    K. Dietliker, Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, SITA Technology Ltd., London, 1991.Google Scholar
  2. (2).
    M. K. Mishra, Y. Yagci, Handbook of Radical Vinyl Polymerization, Marcel Dekker Inc., New York, 1998.Google Scholar
  3. (3).
    S. P. Pappas, UV Curing Science and Technolgy, Technology Marketing Corp., Norwalk, 1978.Google Scholar
  4. (4).
    J. P. Fouassier, Photoinitiation, Photopolymerization and Photocuring, Hanser Verlag, Munich, 1995.Google Scholar
  5. (5).
    R. S. Davidson, Exploring the Science, Technology and Applications of UV and EB Curing, SITA Technology Ltd., London, 1999.Google Scholar
  6. (6).
    X. Jiang and J. Yin, Macromolecules, 37, 7850, (2004).CrossRefGoogle Scholar
  7. (7).
    X. Jian, H. Xu, and J. Yini, Polymer, 46, 11079, (2005).CrossRefGoogle Scholar
  8. (8).
    M. Aydin, N. Arsu, and Y. Yagci, Macromol. Rapid Commun., 24, 718, (2003).CrossRefGoogle Scholar
  9. (9).
    T. N. Eren, B. Graff, J. Lalevee, and D. Avci, Prog. Org. Coat., 128, 148 (2019).CrossRefGoogle Scholar
  10. (10).
    L. Cokbaglan, N. Arsu, Y. Yagci, S. Jockusch, and N. J. Turro, Macromolecules, 36, 2649 (2003).CrossRefGoogle Scholar
  11. (11).
    X. Jiang, H. Xu, and J. Yin, Polymer, 45, 133 (2004).CrossRefGoogle Scholar
  12. (12).
    X. Jiang and J. Yin, Polymer, 45, 5057 (2004).CrossRefGoogle Scholar
  13. (13).
    X. Jiang and J. Yin, Macromol. Rapid Commun., 25, 748 (2004).CrossRefGoogle Scholar
  14. (14).
    X. Jiang and J. Yin, J. Appl. Polym. Sci., 94, 2395 (2004).CrossRefGoogle Scholar
  15. (15).
    M. A. Lago, A. Rodriguez-Bernaldo de Quiroz, R. Sendon, J. Bustos, and M. T. Nieto, Perfecto Paseiro, Photoinitiators: A Food Safety Review Food Additives & Contaminants: Part A, 32, 5 (2015).Google Scholar
  16. (16).
    J. Sutter, V. Dudler, and R. Meuwly, Packaging Materials 8. Printing Inks for Food Packaging Composition and Properties of Printing Inks, ILSI-EUROPE, Belgium, 2011.Google Scholar
  17. (17).
    T. Rothenbacher, M. Baumann, and D. Fügel, Food Addit. Contam., 24, 438 (2007).CrossRefGoogle Scholar
  18. (18).
    K. Dietliker, R. Hüsler, J. L. Birbaum, S. Ilg, S. Villeneuve, K. Studer, T. Jung, J. Benkhoff, H. Kura, A. Matsumoto, and H. Oka, Prog. Org. Coat., 58, 146 (2007).CrossRefGoogle Scholar
  19. (19).
    S. Dadashi-Silab, C. Aydogan, and Y. Yagci, Polym. Chem., 6, 6595 (2015).CrossRefGoogle Scholar
  20. (20).
    D. Avci and T. N. Eren, Photopolym. Initiating Systems, 29, 131 (2018).CrossRefGoogle Scholar
  21. (21).
    J. Wei, H. Wang, X. Jiang, and J. Yin, Macromol. Chem. Phys., 207, 1752 (2006).CrossRefGoogle Scholar
  22. (22).
    X. Jiang, J. Luo, and J. Yin, Polymer, 50, 37 (2009).CrossRefGoogle Scholar
  23. (23).
    G. Temel and N. Arsu, J. Photochem. Photobiol. A: Chem., 202, 63 (2009).CrossRefGoogle Scholar
  24. (24).
    H. Akat, B. Gacal, D. K. Balta, N. Arsu, and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 48, 2109 (2010).CrossRefGoogle Scholar
  25. (25).
    L. Tiantian, S. Zhilong, X. Hongjie, J. Xuesong, M. Xiaodong, and Y. Jie, Chin. Chem. Lett., 43, 46 (2017).Google Scholar
  26. (26).
    S. Yamago, E. Kayahara, and H. Yamada, React. Funct. Polym., 69, 416 (2009).CrossRefGoogle Scholar
  27. (27).
    K.A. Davis and K. Matyjaszewski, Statistical, Gradient, Block, and Graft Copolymers by Controlled/Living Radical Polymerizations, Springer, Berlin, 2002.CrossRefGoogle Scholar
  28. (28).
    V. Coessens and T. Pintauer, Prog. Polym. Sci., 26, 337 (2001).CrossRefGoogle Scholar
  29. (29).
    W. A. Braunecker, and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007).CrossRefGoogle Scholar
  30. (30).
    K. Matyjaszewski, J. Macromol. Sci. Pure Appl. Chem., 34, 1785 (1994).CrossRefGoogle Scholar
  31. (31).
    K. Matyjaszewski and J. H. Xia, Chem. Rev., 101, 2921 (2001).CrossRefGoogle Scholar
  32. (32).
    K. Matyjaszewski, Controlled/Living Radical Polymerization: From Synthesis to Materials, American Chemical Society, Washington DC, 2006.CrossRefGoogle Scholar
  33. (33).
    B. Oktay, S. Demir, and N. Kayaman-Apohan, Sci. Eng. C., 50, 386 (2015).CrossRefGoogle Scholar
  34. (34).
    G. Temel, N. Arsu, and Y. Yagci, Polym. Bull., 57, 51 (2006).CrossRefGoogle Scholar
  35. (35).
    E. Kandirmaz, N. Apohan, and E. Gençoğlu, Prog. Org. Coat., 119, 36 (2018).CrossRefGoogle Scholar
  36. (36).
    M. Aydin, N. Arsu, Y. Yagci, S. Jockusch, and N. J. Turro, Macromolecules, 38, 4133 (2005).CrossRefGoogle Scholar
  37. (37).
    C. D. Smith, H. Grubbs, H. F. Webster, A. Gungor, J. P. Wightman, and J. E. McGrath, High Perform. Polym., 3, 211 (1991).CrossRefGoogle Scholar
  38. (38).
    D. J. Riley, Ph. D. Thesis, Synthesis and Characterization of Phosphorus Containing Polycarylene ether)s, Virgina Polytechnic Institute, 1997.Google Scholar
  39. (39).
    A. Beyler-Çiğil and M. V. Kahraman, Prog. Org. Coat., 101, 468 (2016).CrossRefGoogle Scholar
  40. (40).
    D. Ciofini, J. Striova, M. Camaiti, and S. Siano, Polym. Degrad. Stab., 123, 47 (2016).CrossRefGoogle Scholar
  41. (41).
    BS 4321: 1969 Methods of test for printing inks (resistance of prints to various physical and chemical agents)_Status: Superseded, Withdrawn (1969).Google Scholar
  42. (42).
    Z. S. Akdemir, N. Kayaman-Apohan, M. V. Kahraman, S. Erdem Kuruca, A. Güngör, and S. Karadenizli, J. Biomater. Sci., 22, 857 (2011).CrossRefGoogle Scholar
  43. (43).
    I. Clemente, M. Aznar, C. Nerín, and O. Bosetti, Food Addit. Contam. Part A, 33, 703 (2016).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Emine Arman Kandirmaz
    • 1
  • Efe N. Gençoğlu
    • 1
  • Nilhan Kayaman Apohan
    • 2
    Email author
  1. 1.School of Applied Science, Printing Technology DepartmentMarmara UniversityGoztepe -IstanbulTurkey
  2. 2.Department of Chemistry, Faculty of Art & ScienceMarmara UniversityGoztepe-IstanbulTurkey

Personalised recommendations