Advertisement

Macromolecular Research

, Volume 27, Issue 7, pp 670–678 | Cite as

Spectroscopic and Thermal Investigation of Silver Nanoparticle Dispersed Biopolymer Matrix Bovine Serum Albumin: A Promising Antimicrobial Agent against the Pathogenic Bacterial Strains

  • Linta Maria Jose
  • Sunny KuriakoseEmail author
Article
  • 14 Downloads

Abstract

The present work describes the synthesis of the polypeptide coated silver nanoparticles by the excellent combination of the macromolecule bovine serum albumin (BSA) and nanosized silver particles (AgNPs). The product was characterised by spectroscopic, microscopic and X-ray diffraction analyses. The thermal characteristics were studied by TG-DTG and DSC measurements. The developed system was evaluated for its antibacterial property by disc diffusion method against the selected pathogenic gram positive and gram negative bacterial strains Streptococcus haemolyticus (+ve), Corynebacterium diphtheriae (+ve), Klebsiella ornithinolytica (-ve) and Salmonella paratyphi (-ve). The study revealed that the AgNP-BSA aggregates displayed appreciable thermal stability and better antimicrobial efficacy and is anticipated to be a promising material for antimicrobial applications.

Keywords

bovine serum albumin antibacterial activity disc diffusion method thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. William, Goddard III, D. Brenner, S. E. Lyshevski, and G. J. Iafrate, Handbook of Nanoscience, Engineering and Technology, 2nd ed., CRC Press, New York, 2007.Google Scholar
  2. (2).
    O. Penon, M. J. Marín, D. B. Amabilino, D. A. Russell, and L. Pérez–García, J. Colloid Interface Sci., 462, 154 (2016).CrossRefGoogle Scholar
  3. (3).
    K. Alaqad and T.A Saleh, J. Environ. Anal. Toxicol., 6, 384 (2016).Google Scholar
  4. (4).
    Y. A. Krutyakov, A. A. Kudrinskiy, A. Y. Olenin, and G. V. Lisichkin, Russian Chem. Rev., 77, 33 (2008).CrossRefGoogle Scholar
  5. (5).
    C. George, S. Kuriakose, S. George, and T. Mathew, Supramol. Chem., 23, 593 (2011).CrossRefGoogle Scholar
  6. (6).
    C. H. Su, P. Velusamy, G. V. Kumar, S. Adhikary, K. Pandian, and P. Anbu, J. Mol. Struct., 1128, 718 (2017).CrossRefGoogle Scholar
  7. (7).
    L. F. Cristóbal, G. A. Castañón, J. P. Rodríguez, N. Martinez, F. Ruiz, N. V. Alonso, R. H. Lara, and S. Y. Reyes–López, J. Nanomater., 2015, Article ID 420853 (2015).Google Scholar
  8. (8).
    R. S. Kumar and A. Jha, Ind. J. Appl. Res., 3, DOI:10.15373/2249555X (2013).Google Scholar
  9. (9).
    M. B. Marulasiddeshwara, S. S. Dakshayani, M. N. Kumar, R. Chethana, P. Kumar, and S. Devaraja, Mat. Sci. Eng. C, 81, 182 (2017).CrossRefGoogle Scholar
  10. (10).
    Y. Wang, J. F. Wong, X. T. Teng, X. Z. Lin, and H. Yang, Nano Lett., 3, 1555 (2003).CrossRefGoogle Scholar
  11. (11).
    C. George, S. Kuriakose, B. Prakashkumar, and T. Mathew, Supramol. Chem., 22, 511 (2010).CrossRefGoogle Scholar
  12. (12).
    L. Biao, S. Tan, Y. Wang, X. Guo, Y. Fu, F. Xu, and Y. Z. Liu, Mat. Sci. Eng. C, 76, 73 (2017).CrossRefGoogle Scholar
  13. (13).
    T. V. Mathew and S. Kuriakose Mat. Sci. Eng. C, 33, 4409 (2013).CrossRefGoogle Scholar
  14. (14).
    D. C. Carter and J. X. Ho, Advan. Protein Chem., 45, 153 (1994).CrossRefGoogle Scholar
  15. (15).
    T. Peters, All About Albumin Biochemistry, Genetics and Medical Applications, Elsevier Inc. 1995.Google Scholar
  16. (16).
    F. L. Flecha and V. Levi, Biochem. Mol. Biol. Educ., 31, 319 (2003).CrossRefGoogle Scholar
  17. (17).
    D. C. Kennedy, H. Qian, V. Gies, and L. Yang, Environ. Sci. Nano, 5, 863 (2018).CrossRefGoogle Scholar
  18. (18).
    A. Ravindran, P. Chandran, and S. S. Khan, Collo. Surf. B: Biointer., 105, 342 (2013).CrossRefGoogle Scholar
  19. (19).
    S. Baron, Medical Microbiology 4th edition, Galveston (TX): University of Texas Medical Branch, 1996.Google Scholar
  20. (20).
    P. Seng, B. M. Boushab, F. Romain, F. Gouriet, N. Bruder, C. Martin, F. Paganelli, E. Bernit, Y. P. Le Treut, P. Thomas, L. Papazian, D. Raoult, and A. Stein, Int. J. Infect. Dis., 45, 65 (2016).CrossRefGoogle Scholar
  21. (21).
    J. Wain, R. S. Hendriksen, M. L. Mikoleit, K. H. Keddy, and R. L. Ochiai, Lancet., 385, 1136 (2015).CrossRefGoogle Scholar
  22. (22).
    M. K. Bhan, R. Bahl, and S. Bhatnagar, Lancet., 366, 749 (2005).CrossRefGoogle Scholar
  23. (23).
    H. Hiroki and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).CrossRefGoogle Scholar
  24. (24).
    L. M. Jose and S. Kuriakose, Macromol. Res., 27, 73 (2019).CrossRefGoogle Scholar
  25. (25).
    D. J. Alderman and P. Smith, Aquaculture, 196, 211 (2001).CrossRefGoogle Scholar
  26. (26).
    Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard–Third Edition, M31–A3, Vol.28:8, 2008.Google Scholar
  27. (27).
    T. Pradeep, NANO the Essentials, Tata McGraw–Hill Education, New Delhi, 2007.Google Scholar
  28. (28).
    T. A. Kareem and A. Kaliani, Arab. J. Chem., 4, 325 (2011).CrossRefGoogle Scholar
  29. (29).
    C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, and S. I. Shah, J. Nanosci. Nanotechnol., 5, 244 (2005).CrossRefGoogle Scholar
  30. (30).
    M. Rai, A. Yadav, and A. Gade, Biotechnol, Adv., 27, 76 (2009).CrossRefGoogle Scholar
  31. (31).
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Research and Post Graduate Department of Chemistry, St.Thomas College, Pala-686574Mahatma Gandhi UniversityKottayamIndia
  2. 2.Research and Post Graduate Department of Chemistry, K. E. College, Mannanam-686561Mahatma Gandhi UniversityKottayamIndia

Personalised recommendations