Macromolecular Research

, Volume 27, Issue 7, pp 713–719 | Cite as

Synthesis and Physical Properties of Proton Conducting Polymer Electrolytes Comprising PAM Cross-Linked Flexible Spacers

  • Seyda Tugba Gunday
  • M. A. Almessiere
  • Hamide Aydın
  • Ayhan BozkurtEmail author


The design of novel proton exchange membranes with high conductivity and better dimensional stability has become increasingly important due to the need for applications in different devices. The present work shows the acid-doped and crosslinked polyacrylamide (PAM) networks including flexible spaces. To this end PAM was modified with 1,4-butanediol diglycidyl ether (BG) to form PAM35BG and PAM50BG networks, which would afford more space for protonated solvents. The reaction of PAM with BG was monitored by FTIR and 13C CP-MAS NMR. The polymer electrolytes were produced by acid doping at several stoichiometric ratios with respect to the monomer repeat unit of a host polymer. The resulting materials exhibited better thermal, chemical, and electrochemical stabilities and had distinct Tg values. Additionally, the pores of the PAM-BG materials were filled with H3PO4 to get PAM35BG0.5H3PO4 and PAM50BG1.0H3PO4. The doping enhanced the proton conductivities of the membranes as high as 0.003 S/cm at 120 °C under an anhydrous atmosphere. The proton diffusion mechanism and the dielectric relaxation were further examined using the complex modulus formalism, M*.


polyacrylamide 1,4-butanediol diglycidyl ether membrane proton conductivity dielectric properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    V. Di Noto, E. Negro, J. Y. Sanchez, and C. Iojoiu, J Am Chem Soc, 132, 2183 (2010).CrossRefGoogle Scholar
  2. (2).
    J. A. Asensio, E. M. Sanchez, and P. Gomez-Romero, Chem Soc Rev, 39, 3210 (2010).CrossRefGoogle Scholar
  3. (3).
    D.-H. Lee, S. Choi, D. W. Lee, and H.-T. Kim, Electrochimica Acta, 270, 402 (2018).CrossRefGoogle Scholar
  4. (4).
    J. A. Kerres, J. Membr. Sci., 185, 3 (2001).CrossRefGoogle Scholar
  5. (5).
    Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Fuel. Cells., 4, 147 (2004).CrossRefGoogle Scholar
  6. (6).
    Q. F. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, Prog. Polym. Sci., 34, 449 (2009).CrossRefGoogle Scholar
  7. (7).
    D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, and I. Cantero, Chem. Mater., 16, 604 (2004).CrossRefGoogle Scholar
  8. (8).
    J. Weber, M. Antonietti, and A. Thomas, Macromolecules, 40, 1299 (2007).CrossRefGoogle Scholar
  9. (9).
    J. Weber, K. D. Kreuer, J. Maier, and A. Thomas, Adv. Mater. (Weinheim), 20, 2595 (2008).CrossRefGoogle Scholar
  10. (10).
    L. Xiao, H. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, and D. Rogers, Chem. Mater, 17, 5328 (2005).CrossRefGoogle Scholar
  11. (11).
    Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, J. Electrochem Soc., 151, A8 (2004).CrossRefGoogle Scholar
  12. (12).
    O. Acar, Ü. Sen, A. Bozkurt, and A. Ata, J. Appl. Polym. Sci., 120, 1193 (2011).CrossRefGoogle Scholar
  13. (13).
    U. Sen, H. Usta, O. Acar, M. Citir, A. Canlier, A. Bozkurt, and A. Ata, Macromol. Chem. Phys., 216, 106 (2015).CrossRefGoogle Scholar
  14. (14).
    O. Acar, A. Bozkurt, and A. Ata, J. Mater. Sci., 45, 993 (2010).CrossRefGoogle Scholar
  15. (15).
    J. Przyłuski, Z. Połtarzewski, and W. Wieczorek, Polymer, 39, 4343 (1998).CrossRefGoogle Scholar
  16. (16).
    D. Raducha, W. Wieczorek, Z. Florjańczyk, and J. R. Stevens, J. Phys. Chem., 100, 20126 (1996).CrossRefGoogle Scholar
  17. (17).
    J. R. Stevens, W. Wieczorek, D. Raducha, and K. R. Jeffrey, Solid State Ionics, 97, 347 (1997).CrossRefGoogle Scholar
  18. (18).
    Q. W. Tang, J. M. Lin, and J. H. Wu, J. Appl. Polym. Sci., 108, 1490 (2008).CrossRefGoogle Scholar
  19. (19).
    Q. W. Tang, J. M. Lin, J. H. Wu, Y. W. Xu, and C. J. Zhang, J. Appl. Polym. Sci., 104, 735 (2007).CrossRefGoogle Scholar
  20. (20).
    W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, Electrochimica Acta, 40, 2327 (1995).CrossRefGoogle Scholar
  21. (21).
    W. Wieczorek and J. R. Stevens, Polymer, 38, 2057 (1997).CrossRefGoogle Scholar
  22. (22).
    J. J. Simhadri, H. A. Stretz, M. Oyanader, and P. E. Arce, Industrial & Eng. Chem. Res., 49, 11866 (2010).CrossRefGoogle Scholar
  23. (23).
    Q. Qin, Q. Tang, Q. Li, B. He, H. Chen, X. Wang, and P. Yang, International J. Hydrogen Energy, 39, 4447 (2014).CrossRefGoogle Scholar
  24. (24).
    A. Bozkurt and W. H. Meyer, Solid State Ionics, 138, 259 (2001).CrossRefGoogle Scholar
  25. (25).
    L. Xu, L. Che, J. Zheng, G. Huang, X. Wu, P. Chen, L. Zhang, and Q. Hu, RSC Adv., 4, 33269 (2014).CrossRefGoogle Scholar
  26. (26).
    L. Vilciauskas, M. E. Tuckerman, G. Bester, S. J. Paddison, and K. D. Kreuer, Nat. Chem., 4, 461 (2012).CrossRefGoogle Scholar
  27. (27).
    A. S. Bhatt, D. K. Bhat, M. S. Santosh, and C. Tai, J. Mater. Chem., 21, 13490 (2011).CrossRefGoogle Scholar
  28. (28).
    K. Mohomed, T. G. Gerasimov, F. Moussy, and J. P. Harmon, Polymer, 46, 3847 (2005).CrossRefGoogle Scholar
  29. (29).
    J. Naik and R. F. Bhajantri, J. Inorganic and Organometallic Polym. Mater., 28, 906 (2018).CrossRefGoogle Scholar
  30. (30).
    S. B. Aziz, O. G. Abdullah, S. R. Saeed, and H. M. Ahmed, Int. J. Electrochem. Sci., 13, 3812 (2018).CrossRefGoogle Scholar
  31. (31).
    Q. Tang, H. Cai, S. Yuan, X. Wang, and W. Yuan, Int. J. Hydrog. Energy, 38, 1016 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Seyda Tugba Gunday
    • 1
  • M. A. Almessiere
    • 1
    • 2
  • Hamide Aydın
    • 3
  • Ayhan Bozkurt
    • 1
    Email author
  1. 1.Department of Physics Institute for Research & Medical ConsultationsImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of PhysicsImam Abdulrrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Biyonanotronic Med EngIstanbulTurkey

Personalised recommendations