Macromolecular Research

, Volume 27, Issue 7, pp 649–656 | Cite as

Self-Healing Polycarbonate-Based Polyurethane with Shape Memory Behavior

  • Shuai Li
  • Jun ZhangEmail author
  • Jianjun Chen
  • Ming Yao
  • Xuepeng Liu
  • Zhiguo JiangEmail author


A self-healing polycarbonate-based shape memory polyurethane (PCPU) comprising of polycarbonate diol, 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-Butanediol (1,4-BDO) was synthesized. Through a series of shape memory tests, PCPUs showed 100% shape fixation rate, and a shape recovery rate of over 95% within 15 s. PCPUs exhibit excellent mechanical properties compared to common shape memory polymers, such as a tensile strength of up to 38.10 MPa and elongation at break of 616%. Additionally, after being damaged, polyurethane can self-heal within 60 s at 80 °C without any external force, which makes it applicable in many fields.


shape memory polyurethane self-healing polycarbonate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Leng, X. Lan, Y. Liu, and S. Du, Prog. Mater. Sci., 56, 1077 (2011).CrossRefGoogle Scholar
  2. (2).
    T. Calvo-Correas, A. Santamaria-Echart A. Saralegi, L. Martin, A. Valea, M. A. Corcuera, and A. Eceiza, Eur. Polym. J., 70, 173 (2015).CrossRefGoogle Scholar
  3. (3).
    S. Chen, J. Ban, H. Zhuo, and L. Mu, Polym. Chem., 9, 576 (2018).CrossRefGoogle Scholar
  4. (4).
    T. Mu, L. Liu, X. Lan, Y. Liu, and J. Leng, Compos. Sci. Teehnol., 160, 169 (2018).CrossRefGoogle Scholar
  5. (5).
    M. D. Hager, S. Bode, C. Weber, and U. S. Schuberte, Prog. Polym. Sci., 49–50, 3 (2015).CrossRefGoogle Scholar
  6. (6).
    H. Deng, L. Lin, M. Ji, S. Zhang, M. Yang, and Q. Fu, Prog. Polym. Sci., 39, 627 (2014).CrossRefGoogle Scholar
  7. (7).
    Q. Song, H. Chen, S. Zhou, S. Zhang, M. Yang, M. Yang, and Q. Fu, Polym. Chem., 7, 1739 (2016).CrossRefGoogle Scholar
  8. (8).
    I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J. M. Kenny, and L. Peponi, Polym. Degrad. Stab., 132, 97 (2016).CrossRefGoogle Scholar
  9. (9).
    B. Xu, Y. Q. Fu, M. Ahmad, J. K. Luo, W. M. Huang, A. Kraft, R. Reuben, Y. T. Pei, Z. G. Chen, and J. Th. M. De Hosson, J. Mater. Chem., 20, 3442 (2010).CrossRefGoogle Scholar
  10. (10).
    S. Ponyrko, R. K. Donato, and L. Matejka, Polym. Chem., 7, 560 (2016).CrossRefGoogle Scholar
  11. (11).
    F. Pilate, A. Toncheva, P. Dubois, and J. M. Raqueze, Eur. Polym. J., 80, 268 (2016).CrossRefGoogle Scholar
  12. (12).
    Y. Chien, W. T. Chuang, U. S. Jeng, and S. H. Hsu, ACS Appl. Mater. Interfaees, 9, 5419 (2017).CrossRefGoogle Scholar
  13. (13).
    Z. P. Zhang, M. Z. Rong, and M. Q. Zhang, Prog. Polym. Sci., 90, 39 (2018).CrossRefGoogle Scholar
  14. (14).
    J. Wu, Z. Jiang, C. Zhao, and H. Zhou, J. Beijing Univ. Chem. Teehnol., 30, 89 (2003).Google Scholar
  15. (15).
    W. Chen, Y. Zhou, Y. Li, J. Sun, X. Pan, Q. Yu, N. Zhou, Z. Zhang, and X. Zhu, Polym. Chem., 7, 6789 (2016).CrossRefGoogle Scholar
  16. (16).
    M. Saenzperez, E. Lizundia, J. M. Laza, J. Garcia-Barrasa, J. L. Vilas, and L. M. Leon, RSC Adv., 6, 69094 (2016).CrossRefGoogle Scholar
  17. (17).
    B. Q. Y. Chan, S. J. W. Heng, S. S. Liow, K. Zhang, and X. J. Loh, Mater. Chem. Frontiers, 1, 767 (2016).CrossRefGoogle Scholar
  18. (18).
    W. Liu, Y. Zhao, R. Wang, J. Li, J. Li, F. Luo, H. Tan, and Q. Fu, Maeromol. Rapid Commun., 38, 1700450 (2017).CrossRefGoogle Scholar
  19. (19).
    S. Naheed, M. Zuber, M. Barikani, I. H. Bukhari, and K. M. Zia, Asian J. Chem., 29, 951 (2017).CrossRefGoogle Scholar
  20. (20).
    M. Momtaz, M. Barikani, and M. Razavi-Nouri, Iran. Polym., 24, 505 (2015).CrossRefGoogle Scholar
  21. (21).
    Y. Heo and H. A. Sodano, Adv. Funct. Mater., 24, 5261 (2015).CrossRefGoogle Scholar
  22. (22).
    H. U. Rehman, Y. Chen, M. S. Hedenqvist, H. Li, W. Xue, Y. Guo, Y. Guo, H. Duan, and H. Liu, Adv. Funet. Mater., 28, 1704109 (2017).CrossRefGoogle Scholar
  23. (23).
    M. Spirkova, J. Pavlicevic, A. Strachotta, R. Poreba, O. Bera, L. Kaprálková, J. Baldrian, M. Šlouf, N. Lazić, and J. Budinski-Simendić, Eur. Polym. J., 47, 959 (2011).CrossRefGoogle Scholar
  24. (24).
    V. Costa, A. Nohales, P. Felix, C. Guillem, D. Gutiérrez, and C. M Gómez, J. Appl. Polym. Sci., 132, 41704 (2015).CrossRefGoogle Scholar
  25. (25).
    Y. Feng, Y. Xue, J. Guo, L. Cheng, L. Jiao, Y. Zhang, and J. Yue, J. Appl. Polym. Sci., 112, 473 (2010).CrossRefGoogle Scholar
  26. (26).
    P. Dongdong and T. Hengshui, J. Appl. Polym. Sci., 132, 41377 (2015).CrossRefGoogle Scholar
  27. (27).
    O. S. Santos, S. M. Coelhod, V. R. Silva, W. N. Mussel, and M. I. Yoshida, J. Hazard. Mater., 324, 406 (2016).CrossRefGoogle Scholar
  28. (28).
    Y. Zhang, W. Li, R. Wu, and W. Wang, RSC Adv., 7, 33701 (2017).CrossRefGoogle Scholar
  29. (29).
    S. Rabia, K. Ayesha, and S. Muhammad, Chinese J. Polym. Sci., 33, 1313 (2015).CrossRefGoogle Scholar
  30. (30).
    S. Chen, J. Hu, Y. Liu, H. Liem, Y. Zhu, and Y. Liu, J. Polym. Sci. Pol. Phys., 45, 444 (2007).CrossRefGoogle Scholar
  31. (31).
    Y. Yang and M. W. Urban, Chem. Soe. Rev., 42, 7446 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingP. R. China
  2. 2.SINOPEC Research Institute of Petroleum EngineeringBeijingP. R. China

Personalised recommendations