Macromolecular Research

, Volume 27, Issue 7, pp 663–669 | Cite as

Electrospun Twin Fibers Encumbered with Intrinsic Antioxidant Activity as Prospective Bandage

  • Touseef AmnaEmail author
  • Fatehia N. Gharsan
  • Ke Shang
  • M. Shamshi Hassan
  • Myung-Seob Khil
  • Inho HwangEmail author


Our investigation for the first time explores the possibility of fabrication of a Capsaicin/polyurethane-based bioactive wound dressing. A micro/nanofibrous bandage was synthesized by electrospinning polyurethane supplemented with natural anti-inflammatory agent, Capsaicin. Herein, the best concentration (3%) of Capsaicin in polyurethane to get a consistent solution was standardized in order to acquire the composite micro/nanofibrous dressing. The as-spun bandage has been investigated by scanning electron microscopy and Fourier transform infrared spectroscopy, and biocompatibility of muscle cells on the bioactive bandage was also examined. Free radical scavenging activity of the fabricated micro/nanofiber bandage was estimated using 2,2-diphenyl-1-picrylhydrazyl assay. Inclusion of Capsaicin in polyurethane transformed the morphology as well as dimension of the fibers. Anti-oxidant wound bandage with diameters around 150–500 nm was fabricated by physical unification of polyurethane with natural Capsaicin. Here, polyurethane was used as a foundation polymer, which was blended with Capsaicin to attain desirable characteristics such as better anti-oxidant activity, hydrophilicity and excellent cell attachment. The polyurethane wound bandage possesses enlarged surface, proscribed evaporation, and fluid drainage ability. These results suggest the beneficial influence of antioxidant Capsaicin on wound repairing process. Therefore, a biologically active, natural compounds such as Capsaicin is material of choice for fabrication of future wound dressings.


muscle cells bandage capsaicin bioactive anti-oxidant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J.-P. Chen and Y. Chiang, J. Nanosci. Nanotechnol., 10, 7560 (2010).CrossRefGoogle Scholar
  2. (2).
    A. R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y. S. Lee, and C. S. Kim, Carbohyd. Polym., 102, 884 (2014).CrossRefGoogle Scholar
  3. (3).
    S. J. Lee, D. N. Heo, J.-H. Moon, H. N. Park, W.-K. Ko, M. S. Bae, J. B. Lee, S. W. Park, E.-C. Kim, C. H. Lee, B.-Y. Jung, and I. K. Kwon, J. Nanosci. Nanotechnol., 14, 7488 (2014).CrossRefGoogle Scholar
  4. (4).
    M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B, 67B, 675 (2003).CrossRefGoogle Scholar
  5. (5).
    B. M. Illigens and C. H. Gibbons, PloS One, 8, e54760 (2013).CrossRefGoogle Scholar
  6. (6).
    S. O. Udegbunam, R. I. Udegbunam, T. O. Nnaji, M. U. Anyanwu, R. O. Kene, and S. M. Anika, J. Intercult. Ethnopharmacol., 4, 239 (2015).CrossRefGoogle Scholar
  7. (7).
    K. S. Chen, P. N. Chen, Y. S. Hsieh, C. Y. Lin, Y. H. Lee, and S. C. Chu, Chem.-Biol. Interact., 228, 35 (2015).CrossRefGoogle Scholar
  8. (8).
    M. Materska, M. Konopacka, J. Rogolinski, and K. Slosarek, Food Chem., 168, 546 (2015).CrossRefGoogle Scholar
  9. (9).
    T. Amna, M. S. Hassan, F. A. Sheikh, H. K. Lee, K. S. Seo, D. Yoon, and I. H. Hwang, Appl. Microbiol. Biot., 97, 1725 (2013).CrossRefGoogle Scholar
  10. (10).
    S. T. Russell and M. J. Tisdale, Mol. Cell. Biochem., 330, 171 (2009).CrossRefGoogle Scholar
  11. (11).
    T. Amna, M. S. Hassan, W. S. Shin, H. Van Ba, H. K. Lee, M. S. Khil, and I. H. Hwang, Colloid. Surf. B, 101, 424 (2013).CrossRefGoogle Scholar
  12. (12).
    W. Brand-Williams, M. E. Cuvelier, and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995).CrossRefGoogle Scholar
  13. (13).
    E. J. Garcia, T. L. C. Oldoni, S. M. D. Alencar, A. Reis, A. D. Loguercio, and R. H. M. Grande, Braz. Dent. J., 23, 22 (2012).CrossRefGoogle Scholar
  14. (14).
    H. W. Yang, K. J. Hwang, H. C. Kwon, H. S. Kim, K. W. Choi, and K. S. Oh, Hum. Reprod., 13, 998 (1998).CrossRefGoogle Scholar
  15. (15).
    T. K. Giri, P. Mukherjee, T. K. Barman, and S. Maity, Int. J. Biol. Macromol., 88, 236 (2016).CrossRefGoogle Scholar
  16. (16).
    R. Qi, R. Guo, M. Shen, X. Cao, L. Zhang, J. Xu, J. Yu, and X. Shi, J. Mater. Chem., 20, 10622 (2010).CrossRefGoogle Scholar
  17. (17).
    T. Amna, M. S. Hassan, J. Yang, M.-S. Khil, K.-D. Song, J.-D. Oh, and I. Hwang, Int. J. Nanomedicine, 9, 891 (2014).CrossRefGoogle Scholar
  18. (18).
    L. D. Tijing, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C.-H. Park, D. W. Kim, and C. S. Kim, Chem. Eng. J., 197, 41 (2012).CrossRefGoogle Scholar
  19. (19).
    R. L. Teku, C. K. Mylangam, and V. Kolapalli, Wor. J. Pharm. Pharm. Sci., 5, 1017 (2015).Google Scholar
  20. (20).
    P. Vashisth, N. Kumar, M. Sharma, and V. Pruthi, Biotechnol. Rep., 8, 36 (2015).CrossRefGoogle Scholar
  21. (21).
    A. Saklani and S. K. Kutty, Drug Discov. Today, 13, 161 (2008).CrossRefGoogle Scholar
  22. (22).
    R. Geethalakshmi, C. Sakravarthi, T. Kritika, M. Arul Kirubakaran, and D. Sarada, Biomed. Res. Int., 2013, 607109 (2013).CrossRefGoogle Scholar
  23. (23).
    C. W. Pyun, J. H. Kim, K. H. Han, G. E. Hong, and C. H. Lee, Biofactors, 40, 494 (2014).CrossRefGoogle Scholar
  24. (24).
    D. Yaffe and O. Saxel, Nature, 270, 725 (1977).CrossRefGoogle Scholar
  25. (25).
    F. Horio, H. Sakurai, Y. Ohsawa, S. Nakano, M. Matsukura, and I. Fujii, eNeurologicalSci, 6, 9 (2017).CrossRefGoogle Scholar
  26. (26).
    S. F. Albaayit, Y. Abba, A. Rasedee, and N. Abdullah, Drug. Des. Dev. Ther., 9, 3507 (2015).Google Scholar
  27. (27).
    D. Altiok, E. Altiok, and F. Tihminlioglu, J. Mater. Sci.-Mater. M., 21, 2227 (2010).CrossRefGoogle Scholar
  28. (28).
    C. M. Srivastava and R. Purwar, Macromol. Res., 26, 872 (2018).CrossRefGoogle Scholar
  29. (29).
    M. Suryamathi, C. Ruba, P. Viswanathamurthi, V. Balasubramanian, and P. Perumal, Macromol. Res., 27, 55 (2019).CrossRefGoogle Scholar
  30. (30).
    R. Rosic, P. Kocbek, J. Pelipenko, J. Kristl, and S. Baumgartner, Acta Pharmaceut, 63, 295 (2013).CrossRefGoogle Scholar
  31. (31).
    A. Rusak and Z. Rybak, Polim. Med., 43, 199 (2013).Google Scholar
  32. (32).
    X. Chen, G. Zhang, Q. Zhang, X. Zhan, and F. Chen, Ind. Eng. Chem. Res., 54, 3813 (2015).CrossRefGoogle Scholar
  33. (33).
    M.-N. Zhang, X.-H. Piao, Z. Li, Y.-T. Zhang, J.-H. Zhao, and N.-P. Feng, Chinese J. Exper. Traditional Medical Formulae, 17, 006 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Touseef Amna
    • 1
    • 2
    Email author
  • Fatehia N. Gharsan
    • 1
  • Ke Shang
    • 2
  • M. Shamshi Hassan
    • 1
    • 3
  • Myung-Seob Khil
    • 3
  • Inho Hwang
    • 2
    Email author
  1. 1.College of ScienceAlbaha UniversityAlbahaKingdom of Saudi Arabia
  2. 2.Department of Animal Science and BiotechnologyChonbuk National UniversityJeonjuKorea
  3. 3.Department of Organic Materials and Fiber EngineeringChonbuk National UniversityJeonjuKorea

Personalised recommendations