Advertisement

Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability

  • Jong Seon Baek
  • Cristiano Carlomagno
  • Thangavelu Muthukumar
  • David Kim
  • Jong Ho Park
  • Jeong Eun Song
  • Claudio Migliaresi
  • Antonella Motta
  • Rui L. Reis
  • Gilson KhangEmail author
Article
  • 5 Downloads

Abstract

Gellan gum is known to be one of the biocompatible materials that resemble living tissues, continuously delivering stem cells or general cells, and filling voids in the wound. In spite of the many advantages of gellan gum, it has difficulty in the application by inserting the scaffolds into the body. In order to generalize gellan gum for medical purpose, it is necessary to increase the injectability of gellan gum. In this study, gellan gum solutions with 0.2, 0.4, 0.6, 0.8 wt% of agar were prepared. The obtained hydrogels were tested for rheological properties and chondrocytes adhesion, morphology and proliferation. Results showed that the addition of agar, in the starting GG solution, allows extruding the material producing micro-porous scaffolds. The biological evaluation demonstrated that the adhesion and proliferation of chondrocytes increase with the presence of agar in the final structure. The solutions composed of GG and agar represent an efficient, fast and high reproducible methodology with the potential to be used as an injectable hydrogel for cartilage regeneration purposes.

Keywords

gellan gum agar hydrogel injectable cartilage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    B. D. Elder and K. A. Athanasiou, Tissue Eng Part B Rev., 15, 43 (2009).CrossRefGoogle Scholar
  2. (2).
    R. M. Schulz and A. Bader, Eur Biophys J., 36, 539 (2007).CrossRefGoogle Scholar
  3. (3).
    K. P. H. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, Pelletier, P. A. Revell, D. Salter, F. R. C. Path, and W. B. van den Berg, Osteoarthritis and Cartilage, 14, 13 (2006).CrossRefGoogle Scholar
  4. (4).
    R. S. Tuan, A. F. Chen, and B. A. Klatt, J Am Acad Orthop Surg., 21, 303 (2013).CrossRefGoogle Scholar
  5. (5).
    D. W. Hutmacher, The Biomaterials: Silver Jubilee Compendium, 21, 2529 (2000).CrossRefGoogle Scholar
  6. (6).
    S. L. Riley, S. Dutt, R. de la Torre, A. C. Chen, R. L. Sah, and A. Ratcliffe, J. Mater. Sci.: Mater. Med., 12, 983 (2001).Google Scholar
  7. (7).
    Z. Q. Gu, J. M. Xiao, and X. H. Zhang, Biomed. Mater. Eng., 8, 75 (1998).Google Scholar
  8. (8).
    R. Ma, D. Xiong, F. Miao, J. Zhang, and Y. Peng, Mater. Sci. Eng. C, 29, 1979 (2009).CrossRefGoogle Scholar
  9. (9).
    R. D. Altman, A. Manjoo, A. Fierlinger, F. Niazi, and M. Nicholls, BMC Musculoskelet Disord, 16, 321 (2015).CrossRefGoogle Scholar
  10. (10).
    B. Choi, S. Y. Kim, B. Lin, B. M. Wu, and M. Lee, ACS Appl. Mater. Interfaces, 6, 20110 (2014).CrossRefGoogle Scholar
  11. (11).
    T. Wu, Y. Li, and D. S. Lee, Macromol. Res., 25, 480 (2017).CrossRefGoogle Scholar
  12. (12).
    M. S. Ponticiello, R. M. Schinagl, S. Kadiyala, and F. P. Barry, J. Biomed. Mater. Res., 52, 246 (2000).CrossRefGoogle Scholar
  13. (13).
    P. Hsiu, G. Chao, S. Yodmuang, X. Q. Wang, L. Sun, D. L. Kaplan, and G. V. Novakovic, J. Biomed. Mater. Res. B: Appl. Biomater., 95, 84 (2010).Google Scholar
  14. (14).
    H. J. Park, J. S. Lee, O. J. Lee, F. A. Sheikh, B. M. Moon, H. W. Ju, J. H. Kim, D. K. Kim, and C. H. Park, Macromol. Res., 22, 592 (2014).CrossRefGoogle Scholar
  15. (15).
    M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X. Mou, S. Li, Y. Deng, and N. He, Bone Research, 5, 17014 (2017).CrossRefGoogle Scholar
  16. (16).
    J. T. Oliveira, L. Martins, R. Picciochi, P. B. Malafaya, R. A. Sousa, N. M. Neves, J. F. Mano, and R. L. Reis, J. Biomed. Mater. Res. PART A, 93A, 852 (2010).Google Scholar
  17. (17).
    M. Duckworth and W. Yaphe, Carbohyd. Res., 16, 189 (1971).CrossRefGoogle Scholar
  18. (18).
    S. K. Chen, C. H. Hsu, M. L. Tsai, R. H. Chen, and G. P. C. Drummen, Int. J. Mol. Sci., 14, 19399 (2013).CrossRefGoogle Scholar
  19. (19).
    C. T. Turo, S. Gnavi, F. Ruini, G. Gambarotta, E. Gioffredi, V. Chiono, I. Perroteau, and G. Ciardelli, J. Tissue. Eng. Regen. Med., 11, 197 (2017).CrossRefGoogle Scholar
  20. (20).
    F. Yang, S. Xia, C. Tan, and X. Zhang, Eur. Food. Res. Technol., 237, 467 (2013).CrossRefGoogle Scholar
  21. (21).
    J. Liao, Y. Qu, B. Chu, X. Zhang, and Z. Qian, Scientific Reports, 5, 9879 (2015).CrossRefGoogle Scholar
  22. (22).
    M. Greiner, X. F. Yin, L. F. Díaz, E. Griesshaber, F. Weitzel, A. Ziegler, S. V. Verdaguer, and W. W. Schmahl, Crystal Growth & Design, 18, 1401 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Jong Seon Baek
    • 1
  • Cristiano Carlomagno
    • 2
    • 3
    • 4
  • Thangavelu Muthukumar
    • 1
  • David Kim
    • 1
  • Jong Ho Park
    • 1
  • Jeong Eun Song
    • 1
  • Claudio Migliaresi
    • 2
    • 3
    • 4
  • Antonella Motta
    • 2
    • 3
    • 4
  • Rui L. Reis
    • 5
  • Gilson Khang
    • 1
    Email author
  1. 1.Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research CenterChonbuk National UniversityDeokjin-gu, JeonjuKorea
  2. 2.Department of Industrial EngineeringUniversity of TrentoTrentoItaly
  3. 3.BIOTech Research CenterUniversity of TrentoTrentoItaly
  4. 4.European Institute of Excellence on Tissue Engineering and Regenerative MedicineTrentoItaly
  5. 5.B’s Research Group - Biomaterials, Biodegradable and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AveParkBarco, GuimarãesPortugal

Personalised recommendations