Macromolecular Research

, Volume 27, Issue 7, pp 640–648 | Cite as

Synthesis and Antibacterial Activities of Boronic Acid-Based Recyclable Spherical Polymer Brushes

  • Hüseyin CicekEmail author
  • Gökhan Kocak
  • Özgür Ceylan
  • Vural Bütün


Crosslinked poly(4-vinylbenzyl chloride) (PVBC) microbead was prepared by suspension polymerization. Various spherical polymer brushes (SPBs) were produced by grafting polymeric chains on their surfaces via surface initiated-atom transfer radical polymerization (SI-ATRP) using 4-vinylphenyl boronic acid (VPBA), 2-(dimethylamino)ethyl methacrylate (DMA), and quaternized DMA (QDMA). PVBC-g-PDMA, PVBC-g-PQDMA, PVBC-g-PVPBA, PVBC-g-P(VPBA-b-DMA), PVBC-g-P(VPBA-co-DMA) and PVBC-g-P(VPBA-b-QDMA) SPBs were characterized using nuclear magnetic resonance spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Antibacterial activities of the synthesized SPBs were investigated against Escherichia coli and Staphylococcus aureus in nutrient and nutrient free media. Although PVBC-g-P(VPBA-b-DMA) SPB provided high antibacterial activity in the nutrient containing media due to its antibacterial, anti-biofilm and anti-QS properties, PVBC-g-P8QDMA SPB was found to be more effective in nutrient free media. Considering repeatable antibacterial activity, the PVBC-g-P(VPBA-b-8QDMA) SPB has advantageous over PVBC-g-P(VPBA-b-DMA) and PVBC-g-P8QDMA SPBs for long-term applications such as wastewater treatment in fluidized bad system.


antibacterial microbead suspension polymerization SI-ATRP spherical polymer brushes 4-vinylbenzyl chloride 4-vinylphenyl boronic acid 2-(dimethylamino)ethyl methacrylate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7084_MOESM1_ESM.pdf (365 kb)
Supplementary material, approximately 365 KB.


  1. (1).
    S. K. Singh, J. Anamika, S. Dipak, and D. Arti, Der Chemica Sinica, 2, 111 (2011).Google Scholar
  2. (2).
    Z. P. Cheng, X. L. Zhu, Z. L. Shi, K. G. Neoh, and E. T. Kang, Ind. Eng. Chem. Res., 44, 7098 (2005).CrossRefGoogle Scholar
  3. (3).
    Z. P. Cheng, X. L. Zhu, Z. L. Shi, K. G. Neoh, and E. T. Kang, Surf. Rev. Lett., 13, 313 (2006).CrossRefGoogle Scholar
  4. (4).
    M. Z. Elsabee and E. S. Abdou, Mater. Sci. Eng. C-Mater., 33, 1819 (2013).CrossRefGoogle Scholar
  5. (5).
    Y. Liu, Y. Liu, X. H. Ren, and T. S. Huang, Appl. Surf. Sci., 296, 231 (2014).CrossRefGoogle Scholar
  6. (6).
    H. P. Yu, Y. C. Fu, G. Li, and Y. X. Liu, Holzforschung, 67, 455 (2013).Google Scholar
  7. (7).
    D. Roy, J. S. Knapp, J. T. Guthrie, and S. Perrier, Biomacromolecules, 9, 91 (2008).CrossRefGoogle Scholar
  8. (8).
    F. Tang, L. F. Zhang, Z. B. Zhang, Z. P. Cheng, and X. L. Zhu, J. Macromol. Sci. A, 46, 989 (2009).CrossRefGoogle Scholar
  9. (9).
    P. Limpiteeprakan and S. Babel, Environ. Monit. Assess, 188 (2016).Google Scholar
  10. (10).
    F. Siedenbiedel and J. C. Tiller, Polymers, 4, 46 (2012).CrossRefGoogle Scholar
  11. (11).
    L. L. Maharaj, M. M. Gupta, and A. K. Gadad, World J. Pharm. Pharm. Sci., 4, 126 (2015).Google Scholar
  12. (12).
    S. Edmondson and S. P. Armes, Polym. Int., 58, 307 (2009).CrossRefGoogle Scholar
  13. (13).
    V. Mittal, Polymers, 2, 40 (2010).CrossRefGoogle Scholar
  14. (14).
    H. Suzuki, M. Murou, H. Kitano, K. Ohno, and Y. Saruwatari, Colloids Surf. B: Biointerfaces, 84, 111 (2011).CrossRefGoogle Scholar
  15. (15).
    F. J. Xu, S. J. Yuan, S. O. Pehkonen, E. T. Kang, and K. G. Neoh, NanoBiotechnology, 2, 123 (2006).CrossRefGoogle Scholar
  16. (16).
    A. Khabibullin, E. Mastan, K. Matyjaszewski, and S. P. Zhu, in Controlled Radical Polymerization at and from Solid Surfaces, P. Vana, Ed. 2016, Vol. 270, pp 29–76.Google Scholar
  17. (17).
    C. J. Fristrup, K. Jankova, and S. Hvilsted, Soft Matter, 5, 4623 (2009).CrossRefGoogle Scholar
  18. (18).
    B. W. Brooks, Chem. Eng. Technol., 33, 1737 (2010).CrossRefGoogle Scholar
  19. (19).
    M. Charnley, M. Textor, and C. Acikgoz, React. Funct. Polym., 71, 329 (2011).CrossRefGoogle Scholar
  20. (20).
    M. T. Gokmen and F. E. Du Prez, Prog. Polym. Sci., 37, 365 (2012).CrossRefGoogle Scholar
  21. (21).
    F. X. Hu, K. G. Neoh, L. Cen, and E. T. Kang, Biotechnol. Bioeng., 89, 474 (2005).CrossRefGoogle Scholar
  22. (22).
    A. J. Kugel, S. M. Ebert, S. J. Stafslien, I. Hevus, A. Kohut, A. Voronov, and B. J. Chisholm, React. Funct. Polym., 72, 69 (2012).CrossRefGoogle Scholar
  23. (23).
    S. Senel, H. Cicek, and A. Tuncel, J. Appl. Polym. Sci., 67, 1319 (1998).CrossRefGoogle Scholar
  24. (24).
    S. Slomkowski and T. Basinska, Macromol. Symp., 295, 13 (2010).CrossRefGoogle Scholar
  25. (25).
    R. Tomovska, J. C. de la Cal, and J. M. Asua, in Monitoring Polymerization Reactions, John Wiley & Sons, 2013, pp 59–77.Google Scholar
  26. (26).
    S. B. Lee, R. R. Koepsel, S. W. Morley, K. Matyjaszewski, Y. J. Sun, and A. J. Russell, Biomacromolecules, 5, 877 (2004).CrossRefGoogle Scholar
  27. (27).
    G. Q. Lu, D. C. Wu, and R. W. Fu, React. Funct. Polym., 67, 355 (2007).CrossRefGoogle Scholar
  28. (28).
    H. Murata, R. R. Koepsel, K. Matyjaszewski, and A. J. Russell, Biomaterials, 28, 4870 (2007).CrossRefGoogle Scholar
  29. (29).
    L. Timofeeva and N. Kleshcheva, Appl. Microbiol. Biot., 89, 475 (2011).CrossRefGoogle Scholar
  30. (30).
    F. Q. Zeng, Y. Q. Shen, S. P. Zhu, and R. Pelton, J. Polym. Sci. Pol. Chem., 38, 3821 (2000).CrossRefGoogle Scholar
  31. (31).
    S. J. Baker, C. Z. Ding, T. Akama, Y.-K. Zhang, V. Hernandez, and Y. Xia, Future Medicinal Chemistry, 1, 1275 (2009).CrossRefGoogle Scholar
  32. (32).
    Y. J. Chang, X. Z. Liu, Q. Zhao, X. H. Yang, K. M. Wang, Q. Wang, M. Lin, and M. Yang, Chinese Chem. Lett., 26, 1203 (2015).CrossRefGoogle Scholar
  33. (33).
    B. Elmas, M. A. Onur, S. Senel, and A. Tuncel, Colloid Polym. Sci., 280, 1137 (2002).CrossRefGoogle Scholar
  34. (34).
    X. B. Li, J. Pennington, J. F. Stobaugh, and C. Schoneich, Anal. Biochem., 372, 227 (2008).CrossRefGoogle Scholar
  35. (35).
    Z. Lin, H. Huang, S. H. Li, J. Wang, X. Q. Tan, L. Zhang, and G. N. Chen, J. Chromatogr. A, 1271, 115 (2013).CrossRefGoogle Scholar
  36. (36).
    S. Senel, Colloid Surf. A, 219, 17 (2003).CrossRefGoogle Scholar
  37. (37).
    J. Zhang, Y. L. Ni, and X. L. Zheng, J. Sep. Sci., 38, 81 (2015).CrossRefGoogle Scholar
  38. (38).
    A. Adamczyk-Wozniak, O. Komarovska-Porokhnyavets, B. Misterkiewicz, V. P. Novikov, and A. Sporzynski, Appl. Organomet. Chem., 26, 390 (2012).CrossRefGoogle Scholar
  39. (39).
    N. T. Ni, H. T. Chou, J. F. Wang, M. Y. Li, C. D. Lu, P. C. Tai, and B. H. Wang, Biochem. Biophys. Res. Commun., 369, 590 (2008).CrossRefGoogle Scholar
  40. (40).
    G. Kocak, H. Cicek, Ö. Ceylan, and V. Bütün, J. Appl. Polym. Sci., 136, 46907 (2019).CrossRefGoogle Scholar
  41. (41).
    H. Cicek, G. Kocak, O. Ceylan, E. A. Kutluca, Z. Dikmen, and V. Butun, J. Appl. Polym. Sci., 135, 46245 (2018).CrossRefGoogle Scholar
  42. (42).
    E. Yavuz, G. Bayramoglu, B. F. Senkal, and M. Y. Arica, J. Appl. Polym. Sci., 113, 2661 (2009).CrossRefGoogle Scholar
  43. (43).
    Y. Man, G. Peng, X. F. Lv, Y. L. Liang, Y. Wang, Y. Chen, and Y. L. Deng, Chromatographia, 78, 157 (2015).CrossRefGoogle Scholar
  44. (44).
    E. Yancheva, D. Paneva, V. Maximova, L. Mespouille, P. Dubois, N. Manolova, and I. Rashkov, Biomacromolecules, 8, 976 (2007).CrossRefGoogle Scholar
  45. (45).
    B. Suart, Infrared Spectroscopy: Fundamental and Applications, John Wiley & Sons, Ltd, 2004.CrossRefGoogle Scholar
  46. (46).
    G. Kahraman, O. Beskardes, Z. M. O. Rzaev, and E. Piskin, Polymer, 45, 5813 (2004).CrossRefGoogle Scholar
  47. (47).
    O. Cetinkaya, M. E. Duru, and H. Cicek, J. Chromatogr. B, 909, 51 (2012).CrossRefGoogle Scholar
  48. (48).
    W. T. Lu, Z. G. Shao, G. Zhang, Y. Zhao, and B. L. Yi, J. Power Sources, 248, 905 (2014).CrossRefGoogle Scholar
  49. (49).
    J. M. Song, S. Y. Lee, H. S. Woo, J. Y. Sohn, and J. Shin, J. Polym. Sci. Pol. Phys., 52, 517 (2014).CrossRefGoogle Scholar
  50. (50).
    M. Karamitrou, E. Sarpaki, and G. Bokias, J. Appl. Polym. Sci., 133 (2016).Google Scholar
  51. (51).
    D. Roy, J. T. Guthrie, and S. Perrier, Soft Matter, 4, 145 (2008).CrossRefGoogle Scholar
  52. (52).
    M. Wiacek, D. Wesolek, S. Rojewski, K. Bujnowicz, and E. Schab-Balcerzak, Polym. Adv. Technol., 26, 49 (2015).CrossRefGoogle Scholar
  53. (53).
    A. King, S. Chakrabarty, W. Zhang, X. M. Zeng, D. E. Ohman, L. F. Wood, S. Abraham, R. Rao, and K. J. Wynne, Biomacromolecules, 15, 456 (2014).CrossRefGoogle Scholar
  54. (54).
    Z. Filip, S. Hermann, and K. Demnerova, Czech J. Food Sci., 26, 458 (2008).CrossRefGoogle Scholar
  55. (55).
    L. D’Souza, P. Devi, T. Kamat, and C. G. Naik, Indian J. Mar. Sci., 38, 45 (2009).Google Scholar
  56. (56).
    M. Ashfaq, S. Khan, and N. Verma, Biochem. Eng. J., 90, 79 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  • Hüseyin Cicek
    • 1
    Email author
  • Gökhan Kocak
    • 2
  • Özgür Ceylan
    • 3
  • Vural Bütün
    • 4
  1. 1.Department of ChemistryMuğla Sitki Koçman UniversityMuğlaTurkey
  2. 2.Department of ChemistryAdiyaman UniversityAdiyamanTurkey
  3. 3.Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMuğla Sitki Koçman UniversityMuğla, UlaTurkey
  4. 4.Department of ChemistryEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations