Multiple Energy Harvesting Based on Reversed Temperature Difference Between Graphene Aerogel Filled Phase Change Materials

  • Chengbin Yu
  • Jae Ryoun YounEmail author
  • Young Seok SongEmail author


We demonstrated a thermo-electric energy harvesting system that utilized the temperature difference between two graphene aerogel filled composites. Two phase change materials (PCMs), polyethylene glycol (PEG) and 1-tetradecanol (1-TD), were used to absorb or release a large amount of heat of fusion during the phase transitions. Since the temperature of cold side can be higher than that of hot side in the heating and cooling processes, unwanted energy loss may occur in the PCM system. Therefore, the amount of energy harvesting is quite limited. In this sense, we designed a new energy harvesting system by integrating two kinds of PCMs to enhance the amount of released heat energy and its time duration. The energy harvesting based on thermo-electric conversion was performed by combining multi-PCMs with N and P type semiconductors (PN TEGs). Based on the different temperature gradients generated in melting and crystallization processes, the electric energy was harvested for 2,200 s and 850 s at the first thermo-electric conversion and for 2,700 s and 1,500 s at the second thermo-electric conversion. In addition, the numerical simulation of the system was carried out using the finite element method (FEM), and the predicted results were close to the experimental results.

Key words

energy harvesting multiple phase change material thermo-electric conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the support from the soft chemical materials research center for organic-inorganic multi-dimensional structures, which is funded by Gyeonggi Regional Research Center Program (GRRC dankook 2016-B03).

Supplementary material

13233_2019_7079_MOESM1_ESM.pdf (2.2 mb)
Multiple Energy Harvesting Based on Reversed Temperature Difference Between Graphene Aerogel Filled Phase Change Materials


  1. (1).
    H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R H. Baughman, and H. H. Lee, Nat. Commun., 7, 10600 (2016).CrossRefGoogle Scholar
  2. (2).
    C. B. Vining, Nat. Mater., 8, 83 (2009).CrossRefGoogle Scholar
  3. (3).
    B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Nat. Rev. Mater., 1, 16050 (2016).CrossRefGoogle Scholar
  4. (4).
    G. Qi, J. Yang, R. Bao, D. Xia, M. Cao, W. Yang, M. Yang, and D. Wei, Nano Res., 10, 802 (2017).CrossRefGoogle Scholar
  5. (5).
    X Chen, H. Gao, M. Yang, W. Dong, X. Huang, A. Li, C. Dong, and G. Wang, Nano Energy, 49, 86 (2018).CrossRefGoogle Scholar
  6. (6).
    J. P. da Cunha and P. Eames, Appl. Energy, 177, 227 (2016).CrossRefGoogle Scholar
  7. (7).
    B. Xu and Z. Li, Appl. Energy, 105, 229 (2013).CrossRefGoogle Scholar
  8. (8).
    M. Jaworski, M. Bednarczyk, and M. Czachor, Appl. Therm. Eng., 96, 527 (2016).CrossRefGoogle Scholar
  9. (9).
    M. M. A. Khan, N. I. Ibrahim, I. Mahbubul, H. M. Ali, R. Saidur, and F. A. Al-Sulaiman, Sol. Energy, 166, 334 (2018).CrossRefGoogle Scholar
  10. (10).
    S. Ye, Q. Zhang, D. Hu, and J. Feng, J. Mater. Chem. A, 3, 4018 (2015).CrossRefGoogle Scholar
  11. (11).
    S. Karaman, A. Karaipekli, A. Sarı, and A. Bicer, Sol. Energy Mater. Sol. Cells, 95, 1647 (2011).CrossRefGoogle Scholar
  12. (12).
    Y. Wang, T. D. Xia, H. X. Feng, and H. Zhang, Renew. Energy, 36, 1814 (2011).CrossRefGoogle Scholar
  13. (13).
    A. Sarı, A. Bicer, F. Al-Sulaiman, A. Karaipekli, and V. Tyagi, Energy Buildings, 164, 166 (2018).CrossRefGoogle Scholar
  14. (14).
    J.-L. Zeng, F.-R. Zhu, S.-B. Yu, Z.-L. Xiao, W.-P. Yan, S.-H. Zheng, L. Zhang, L.-X. Sun, and Z. Cao, Sol. Energy Mater. Sol. Cells, 114, 136 (2013).CrossRefGoogle Scholar
  15. (15).
    M. G. Li, Y. Zhang, Y. H. Xu, and D. Zhang, Polym. Bull., 67, 541 (2011).CrossRefGoogle Scholar
  16. (16).
    T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, and Z. Zhang, Appl. Energy, 171, 113 (2016).CrossRefGoogle Scholar
  17. (17).
    Z. Zhang and X. Fang, Energy Convers. Manage., 47, 303 (2006).CrossRefGoogle Scholar
  18. (18).
    G. Leng, G. Qiao, Z. Jiang, G. Xu, Y. Qin, C. Chang, and Y. Ding, Appl. Energy, 217, 212 (2018).CrossRefGoogle Scholar
  19. (19).
    G. V. Belessiotis, K. G. Papadokostaki, E. P. Favvas, E. K. Efthimiadou, and S. Karellas, Energy Convers. Manage., 168, 382 (2018).CrossRefGoogle Scholar
  20. (20).
    B. Mu and M. Li, Sci. Rep., 8, 8878 (2018).CrossRefGoogle Scholar
  21. (21).
    L. Liu, K. Zheng, Y. Yan, Z. Cai, S. Lin, and X. Hu, Sol. Energy Mater. Sol. Cells, 185, 487 (2018).CrossRefGoogle Scholar
  22. (22).
    Y. S. Yun, S. Y. Cho, and H.-J. Jin, Maeromol. Res., 22, 509 (2014).CrossRefGoogle Scholar
  23. (23).
    G.-Q. Qi, C.-L. Liang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Sol. Energy Mater Sol. Cells, 123, 171 (2014).CrossRefGoogle Scholar
  24. (24).
    A. Krittayavathananon and M. Sawangphruk, Eleetroehim. Aeta, 212, 237 (2016).Google Scholar
  25. (25).
    D. Li and G. Sur, Maeromol. Res., 22, 113 (2014).CrossRefGoogle Scholar
  26. (26).
    D. Zou, X. Ma, X. Liu, P. Zheng, and Y. Hu, Int. J. Heat Mass Transfer, 120, 33 (2018).CrossRefGoogle Scholar
  27. (27).
    J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, Sol. Energy Mater. Sol. Cells, 174, 56 (2018).CrossRefGoogle Scholar
  28. (28).
    W. Feng, M. Qin, and Y. Feng, Carbon, 109, 575 (2016).CrossRefGoogle Scholar
  29. (29).
    C. Yu, S. H. Yang, S. Y. Pak, J. R. Youn, and Y. S. Song, Energy Convers. Manage, 169, 88 (2018).CrossRefGoogle Scholar
  30. (30).
    J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Chem. Eng. J., 315, 481 (2017).CrossRefGoogle Scholar
  31. (31).
    S. A. Atouei, A. A. Ranjbar, and A. Rezania, Appl. Energy, 208, 332 (2017).CrossRefGoogle Scholar
  32. (32).
    S. A. Atouei, A. Rezania, A. Ranjbar, and L. A. Rosendahl, Energy, 156, 311 (2018).CrossRefGoogle Scholar
  33. (33).
    W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy, 143, 1 (2015).CrossRefGoogle Scholar
  34. (34).
    S. Kim, Appl. Energy, 102, 1458 (2013).CrossRefGoogle Scholar
  35. (35).
    J. Choi, N. D. Tu, S.-S. Lee, H. Lee, J. S. Kim, and H. Kim, Maeromol. Res., 22, 1104 (2014).CrossRefGoogle Scholar
  36. (36).
    Y. Zhang, G. G. Gurzadyan, M. M. Umair, W. Wang, R. Lu, S. Zhang, and B. Tang, Chem. Eng. J., 344, 402 (2018).CrossRefGoogle Scholar
  37. (37).
    T. H. Kwan, X. Wu, and Q. Yao, Energy, 159, 448 (2018).CrossRefGoogle Scholar
  38. (38).
    R. Chavez, S. Angst, J. Hall, F. Maculewicz, J. Stoetzel, H. Wiggers, L. T. Hung, N. Van Nong, N. Pryds, and G. Span, J. Phys. D: Appl. Phys., 51, 014005 (2017).CrossRefGoogle Scholar
  39. (39).
    R. Chavez, S. Angst, J. Hall, J. Stoetzel, V. Kessler, L. Bitzer, F. Maculewicz, N. Benson, H. Wiggers, D. Wolf, G. Schierning, and R. Schmechel, J. Electron. Mater., 43, 2376 (2014).CrossRefGoogle Scholar
  40. (40).
    J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Carbon, 100, 693 (2016).CrossRefGoogle Scholar
  41. (41).
    H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett., 287, 53 (1998).CrossRefGoogle Scholar
  42. (42).
    J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys., 153, 209 (2015).CrossRefGoogle Scholar
  43. (43).
    J. Song, X. Wang, and C.-T. Chang, J. Nanomater., 2014, 2014.Google Scholar
  44. (44).
    J. Kim, W.-H. Khoh, B.-H. Wee, and J.-D. Hong, Rse. Adv., 5, 9904 (2015).CrossRefGoogle Scholar
  45. (45).
    L.-S. Tang, J. Yang, R.-Y. Bao, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, Energy. Convers. Manage., 146, 253 (2017).CrossRefGoogle Scholar
  46. (46).
    Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, Materials, 8, 732 (2015).CrossRefGoogle Scholar
  47. (47).
    Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, RSC Adv., 4, 28802 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Research Institute of Advanced Materials (RIAM), Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Fiber System EngineeringDankook UniversityYongin, Gyeonggi-doKorea

Personalised recommendations