Advertisement

New Hexagonally Ordered Monolayer Electrode with Monodisperse Carbon/Fe3O4 Microspheres for High Performance Lithium Ion Battery Anodes

  • Jun-Ki HwangEmail author
  • Kyung-Do Suh
Article
  • 10 Downloads

Abstract

This work details the facile preparation of a hexagonally ordered monolayer electrode with monodispersed hollow C/Fe3O4 microspheres as a novel anode candidate for lithium-ion batteries. The monolayer electrode was produced by the heat treatment of a polyvinyl alcohol film comprising a monolayer of microspheres. The electrode was prepared by stamping with microspheres assembled into the monolayer, using an ordered patterning micro-framework polydimethylsiloxane on a polyvinyl alcohol spin-coated cupper foil. The morphological and structural characterizations of the monolayer electrode were conducted by optical microscopy, scanning electron microscopy, focused-ion beam scanning electron microscopy, transmission electron microscopy, and X-ray diffractometery. Although the monolayer electrode was composed of the active materials only without the use of any polymeric binder or carbon additives such as acetylene black and Super-P, the electrode exhibited a superior long-term cycling stability and rate capability with the coulombic efficiency of 99% at a high current rate due to the good structural stability and low electrical resistance as a result of the ordered monolayer structure.

Keywords

monolayer thin film hexagonally ordered carbon/magnetite composite anode materials Li-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7078_MOESM1_ESM.pdf (2.9 mb)
Supplementary material, approximately 2.88 MB.

References

  1. (1).
    T. Muraliganth, A. V. Murugan, and A. Manthiram, Chem. Commun., 7360 (2009).Google Scholar
  2. (2).
    H. Liu, G. Wang, J. Wang, and D. Wexler, Electrochem. Commun., 10, 1879 (2008).CrossRefGoogle Scholar
  3. (3).
    Q. Q. Xiong, Y. Lu, X. L. Wang, C. D. Gu, Y. Q. Qiao, and J. P. Tu, J. Alloys Compd., 536, 219 (2012).CrossRefGoogle Scholar
  4. (4).
    S. Jin, H. Deng, D. Long, X. Liu, L. Zhan, X. Liang, W. Qiao, and L. Ling, J. Power Source, 196, 3887 (2011).CrossRefGoogle Scholar
  5. (5).
    H. Zhang and P. V. Braun, Nano Lett, 12, 2778 (2012).CrossRefGoogle Scholar
  6. (6).
    X. Fan, P. Dou, A. Jiang, D. Ma, and X. Xu, ACS Appl. Mater. Interfaces, 6, 22282 (2014).CrossRefGoogle Scholar
  7. (7).
    T. Yiping T. Xiaoxu, H. Guangya, and Zheng Guoqu, Electrochim Acta, 117, 172 (2014).CrossRefGoogle Scholar
  8. (8).
    J. Liu, H. G. Zhang, J. Wang, J. Cho, J. H. Pikul, E. S. Epstein, X. Huang, J. Liu, W. P. King, and P. V. Braun, Adv. Mater., 26, 7096 (2014).CrossRefGoogle Scholar
  9. (9).
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, J. Power Source, 97–98, 235 (2001).CrossRefGoogle Scholar
  10. (10).
    S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J. M. Tarascon, J. Electrochem. Soc., 149, A627 (2002).CrossRefGoogle Scholar
  11. (11).
    Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Electrochim. Acta, 55, 1140 (2010).CrossRefGoogle Scholar
  12. (12).
    G. H. Lee, J. G. Park, Y. M. Sung, K. Y. Chung, W. I. Cho, and D. W. Kim, Nanotechnology, 20, 295205 (2009).CrossRefGoogle Scholar
  13. (13).
    T. Yoon, C. Chae, Y.-K. Sun, X. Zhao, H. H. Kung, and J. K. Lee, J. Mater. Chem., 21, 17325 (2011).CrossRefGoogle Scholar
  14. (14).
    Q. Hao, D. Lei, X. Yin, M. Zhang, S. Liu, Q. Li, L. Chen, and T. Wang, J. Solid State Electrochem., 15, 2563 (2011).CrossRefGoogle Scholar
  15. (15).
    M. M. Baksh, M. Jaros, and J. T. Groves, Nature, 427, 139 (2004).CrossRefGoogle Scholar
  16. (16).
    J. Zhang, Y. Li, X. Zhang, and B. Yang, Adv. Mater., 22, 4249 (2010).CrossRefGoogle Scholar
  17. (17).
    F. Marlow, Muldarisnur, P. Sharifi, R. Brinkmann, and C. Mendive, Angew. Chem. Int. Ed., 48, 6212 (2009).CrossRefGoogle Scholar
  18. (18).
    X. Li, T. Wang, J. Zhang, X. Yan, X. Zhang, D. Zhu, W. Li, X. Zhang, and B. Yang, Langmuir, 26, 2930 (2010).CrossRefGoogle Scholar
  19. (19).
    C. Park, T. Lee, Y. Xia, T. J. Shin, J. Myoung, and U. Jeong, Adv. Mater., 26, 4633 (2014).CrossRefGoogle Scholar
  20. (20).
    J.-K. Hwang, H.-S. Lim, Y.-K. Sun, and K.-D. Suh, J. Power Sources, 244, 538 (2013).CrossRefGoogle Scholar
  21. (21).
    S.-L. Chou, J.-Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.-K. Liu, and S.-X. Dou, J. Mater. Chem., 20, 2092 (2010).CrossRefGoogle Scholar
  22. (22).
    B. T. Hang, T. Doi, S. Okada, and J. Yamaki, J. Power Sources, 174, 493 (2007).CrossRefGoogle Scholar
  23. (23).
    P. Balaya, H. Li, L. Kienle, and J. Maier, Adv. Funct Mater., 13, 621 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of EngineeringHanyang UniversitySeoulKorea

Personalised recommendations