Temperature and Salt-Dependent Dielectric Properties of Blend Solid Polymer Electrolyte Complexed with LiBOB

  • Anil Arya
  • Achchhe Lal SharmaEmail author


In the present paper, the temperature and salt-dependent dielectric properties of poly(ethylene oxide) (PEO) and poly(vinyl pyrrolidone) (PVP) blend matrix complexed with LiBOB are investigated in the frequency range 1 Hz to 1 MHz and temperature range 40 °C to 100 °C (@10 °C). The real and imaginary part of the complex permittivity, complex conductivity have been simulated in the whole frequency window and the various fitted parameters were evaluated respectively. The estimated value of the dielectric constant and the ac conductivity increases with the increase of temperature. The lowering of relaxation time and hopping length is observed with the salt addition that is in correlation with the complex conductivity results. The modulus formalism was used to analyze the recorded dielectric data. The dc conductivity, hopping frequency, and segmental motion are strongly coupled with each other as evidenced by the Debye-Stoke-Einstein (DSE) plot. An interaction mechanism has also been proposed to explore the effect of temperature on the hopping length, relaxation time, hopping potential barrier and the segmental motion of the polymer chain.


blend solid polymer electrolyte complex permittivity relaxation time ion transport mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Mater. Today, 18, 252 (2015).Google Scholar
  2. (2).
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).Google Scholar
  3. (3).
    A. L. Sharma and A. K. Thakur, J. Appl. Polym. Sci., 118, 2743 (2010).Google Scholar
  4. (4).
    M. S. Johnsi and S. A. Suthanthiraraj, Macromol. Res., 26 100 (2018).Google Scholar
  5. (5).
    A. Arya and A. L. Sharma, Ionics, 23, 497 (2017).Google Scholar
  6. (6).
    W. Liu, N. Liu, J. Sun, P. C. Hsu, Y. Li, H. W. Lee, and Y. Cui, Nano Lett., 15, 2740 (2015).Google Scholar
  7. (7).
    J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, Prog. Polym. Sci., 81, 114 (2018).Google Scholar
  8. (8).
    J. Zheng, Y. Y. Hu, ACS Appl. Mater. Interfaces, 10, 4113 (2018).Google Scholar
  9. (9).
    J. B. Goodenough and P. Singh, J. Electrochem. Soc., 162, 2387 (2015).Google Scholar
  10. (10).
    A. L. Sharma and A. K. Thakur, Ionics, 19, 795 (2013).Google Scholar
  11. (11).
    A. Arya and A. L. Sharma, J. Phys. D: Appl. Phys., 51, 045504 (2018).Google Scholar
  12. (12).
    L. Long, S. Wang, M. Xiao, and Y. Meng, J. Mater. Chem. A, 4 10038 (2016).Google Scholar
  13. (13).
    J. Yi, S. Guo, P. He, and H. Zhou, Energy Environm. Sci., 10 860 (2017).Google Scholar
  14. (14).
    C. M. Costa, M. M. Silva, and S. Lanceros–Méndez, RSC Adv., 3, 11404 (2013).Google Scholar
  15. (15).
    C. Bhatt, R. Swaroop, A. Arya, and A. L. Sharma, J. Mater. Sci. Eng. B, 5, 418 (2015).Google Scholar
  16. (16).
    D. Fragiadakis, S. Dou, R. H. Colby, and J. Runt, Macromolecules, 41, 5723 (2008).Google Scholar
  17. (17).
    S. J. Park, A. R. Han, J. S. Shin, and S. Kim, Macromol. Res., 18, 336 (2010)Google Scholar
  18. (18).
    A. Arya and A. L. Sharma, Appl. Sci. Lett., 2, 72 (2016).Google Scholar
  19. (19).
    A. Arya, M. Sadiq, and A. L. Sharma, Ionics, 24, 2295 (2018).Google Scholar
  20. (20).
    A. M. Rocco, R. P. Pereira, and M. I. Felisberti, Polymer, 42, 5199 (2001).Google Scholar
  21. (21).
    K. M. Anilkumar, B. Jinisha, M. Manoj, and S. Jayalekshmi, Eur. Polym. J., 89, 249 (2017).Google Scholar
  22. (22).
    E. M. Abdelrazek, I. S. Elashmawi, A. El–Khodary, and A. Yassin, Curr. Appl. Phys., 10, 607 (2010).Google Scholar
  23. (23).
    A. Arya and A. L. Sharma, J. Solid State Electrochem., 22, 2725 (2018).Google Scholar
  24. (24).
    B. K. Choi, Y. W. Kim, and H. K. Shin, Electrochim. Acta, 45, 1371 (2000).Google Scholar
  25. (25).
    M. M. Jacob, S. R. Prabaharan, and S. Radhakrishna, Solid State Ionics, 104, 267 (1997).Google Scholar
  26. (26).
    A. Arya, S. Sharma, A. L. Sharma, D. Kumar, and M. Sadiq, Asian J. Eng. Appl. Technol., 5, 4 (2016).Google Scholar
  27. (27).
    L. Fan, Z. Dang, C. W. Nan, and M. Li, Electrochim. Acta, 48, 205 (2002).Google Scholar
  28. (28).
    P. Joge, D. K. Kanchan, P. Sharma, and N. Gondaliya, Indian J. Pure Appl. Phys., 51, 350 (2013).Google Scholar
  29. (29).
    T. M. Ali, N. Padmanathan, and S. Selladurai, Ionics, 21, 829 (2015).Google Scholar
  30. (30).
    M. Premalatha, N. Vijaya, S. Selvasekarapandian, and S. Selvalakshmi, Ionics, 22, 1299 (2016).Google Scholar
  31. (31).
    R. L. Thankamony, H. Chu, S. Lim, T. Yim, Y. J. Kim, T. H. Kim, Macromol. Res., 23, 38 (2015).Google Scholar
  32. (32).
    A. Arya and A. L. Sharma, J. Phys. D: Appl. Phys., 50, 443002 (2017).Google Scholar
  33. (33).
    K. Karuppasamy, R. Antony, S. Alwin, S. Balakumar, and X. Sahaya Shajan, Mater. Sci. Forum, 807, 41 (2015).Google Scholar
  34. (34).
    A. R. Polu, R. Kumar, and H. W. Rhee, Ionics, 21, 125 (2015).Google Scholar
  35. (35).
    K. K. Kumar, M. Ravi, Y. Pavani, S. Bhavani, A. K. Sharma, V. N. Rao, Physica B: Condens. Matter, 406, 1706 (2011).Google Scholar
  36. (36).
    K. Xu, S. Zhang, T. R. Jow, W. Xu, and C. A. Angell, Electrochem. Solid–State Lett., 5, 26 (2002).Google Scholar
  37. (37).
    L. F. Li, B. Xie, H. S. Lee, H. Li, X. Q. Yang, J. McBreen, and X. J. Huang, J. Power Sources, 189, 539 (2009).Google Scholar
  38. (38).
    F. I. Chowdhury, M. U. Khandaker, Y. M. Amin, M. Z. Kufian, and H. J. Woo, Ionics, 23, 275 (2017).Google Scholar
  39. (39).
    I. S. Noor, S. R. Majid, and A. K. Arof, Electrochim. Acta, 102, 149 (2013).Google Scholar
  40. (40).
    G. B. Appetecchi, D. Zane, and B. Scrosati, J. Electrochem. Soc., 151, 1369 (2004).Google Scholar
  41. (41).
    R. J. Sengwa and S. Choudhary, J. Alloys Compd., 701, 652 (2017).Google Scholar
  42. (42).
    S. Choudhary and R. J. Sengwa, J. Appl. Polym. Sci., 132, 41311 (2015).Google Scholar
  43. (43).
    S. Das and A. Ghosh, J. Phys. Chem. B, 121, 5422 (2017).Google Scholar
  44. (44).
    S. Choudhary and R. J. Sengwa, Mater. Chem. Phys., 142, 172 (2013).Google Scholar
  45. (45).
    R. J. Sengwa and S. Choudhary, Express Polym. Lett., 4, 559 (2010).Google Scholar
  46. (46).
    A. Arya and A. L. Sharma, J. Phys. Condens. Matter, 30, 165402 (2018).Google Scholar
  47. (47).
    K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941).Google Scholar
  48. (48).
    R. M. Hill and A. K. Jonscher, Contemp. Phys., 24, 75 (1983).Google Scholar
  49. (49).
    A. Roy, B. Dutta, and S. Bhattacharya, RSC Adv., 6, 65434 (2016).Google Scholar
  50. (50).
    U. H. Choi and B. M. Jung, Macromol. Res., 26, 459 (2018).Google Scholar
  51. (51).
    A. Arya and A. L. Sharma, J. Mater. Sci. Mater. Electron., 29, 17903 (2018).Google Scholar
  52. (52).
    P. Y. Yamada, D. Daneshvari, R. Pittini, S. Vaucher, L. Rohr, S. Leparoux, and H. Leuenberger, Eur. Polym. J., 44, 1191 (2008).Google Scholar
  53. (53).
    G. Hu, F. Gao, J. Kong, S. Yang, Q. Zhang, Z. Liu, and H. Sun, J. Alloys Compd., 619, 686 (2015).Google Scholar
  54. (54).
    H. J. Woo, S. R. Majid, and A. K. Arof, Solid State Ionics, 199, 14 (2011).Google Scholar
  55. (55).
    C. S. Prasanna and S. A. Suthanthiraraj, Ionics, 24, 2631 (2018).Google Scholar
  56. (56).
    A. G. L. A. I. A. Vassilikou–Dova, and I. M. Kalogeras, in Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley, Hoboken, New Jersey, 2009, pp 497–613.Google Scholar
  57. (57).
    A. L. Sharma and A. K. Thakur, Ionics, 17, 135 (2011).Google Scholar
  58. (58).
    K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, Chem. Phys. Lett., 692, 19 (2018).Google Scholar
  59. (59).
    A. Awadhia, S. K. Patel, and S. L. Agrawal, Prog. Cryst. Growth Charact. Mater., 52, 61 (2006).Google Scholar
  60. (60).
    M. Sadiq, A. Arya, and A. L. Sharma, Springer Proc. Phys., 178, 389 (2017).Google Scholar
  61. (61).
    H. J. Woo, S. R. Majid, and A. K. Arof, Mater. Chem. Phys., 134, 755 (2012).Google Scholar
  62. (62).
    P. Bose, A. Roy, B. Dutta, and S. Bhattacharya, Solid State Ionics, 311, 75 (2017).Google Scholar
  63. (63).
    M. Ravi, Y. Pavani, K. Kiran Kumar, S. Bhavani, A. K. Sharma, and V. V. R. Narasimha Rao, Mater. Chem. Phys., 130, 442 (2011).Google Scholar
  64. (64).
    S. Chopra, S. Sharma, T. C. Goel, and R. G. Mendiratta, Solid State Commun., 127, 299 (2003).Google Scholar
  65. (65).
    A. L. Sharma and A. K. Thakur, Ionics, 21, 1561 (2015).Google Scholar
  66. (66).
    A. K. Arof, S. Amirudin, S. Z. Yusof, and I. M. Noor, Phys. Chem. Chem. Phys., 16, 1856 (1856)Google Scholar
  67. (67).
    K. Nakamura, T. Saiwaki and K. Fukao, Macromolecules, 43, 6092 (2010).Google Scholar
  68. (68).
    P. Pal and A. Ghosh, J. Appl. Phys., 120, 045108 (2016).Google Scholar
  69. (69).
    A. Roy, B Dutta, and S. Bhattacharya, Ionics, 23, 3389 (2017).Google Scholar
  70. (70).
    K. Funke, Solid State Ionics, 94, 27 (1997).Google Scholar
  71. (71).
    J. C. Dyre, J. Appl. Phys., 64, 2456 (1988).Google Scholar
  72. (72).
    P. S. Anantha and K. Hariharan, Mater. Sci. Eng. B, 121, 12 (2005).Google Scholar
  73. (73).
    I. Fuentes, A. Andrio, F. Teixidor, C. Vinas, and V. Compan, Phys. Chem. Chem. Phys., 19, 15177 (2017).Google Scholar
  74. (74).
    I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, Phys. Chem. Chem. Phys., 18, 13941 (2016).Google Scholar
  75. (75).
    M. C. R. Shastry and K. J. Rao, Solid State Ionics, 44, 187 (1991).Google Scholar
  76. (76).
    S. Austin Suthanthiraraj, D. Joice Sheeba, and B. Joseph Paul, Mater. Res. Bull., 44, 1534 (2009).Google Scholar
  77. (77).
    R. J. Sengwa, S. Choudhary, and S. Sankhla, Express Polym. Lett., 2, 800 (2008).Google Scholar
  78. (78).
    A. L. Sharma and A. K. Thakur, J. Mater. Sci., 46, 1916 (2011).Google Scholar
  79. (79).
    F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, J. Phys. Chem., 78, 639 (1974).Google Scholar
  80. (80).
    S. Choudhary and R. J. Sengwa, Electrochim. Acta, 247, 924 (2017).Google Scholar
  81. (81).
    H. M. Ng, S. Ramesh, and K. Ramesh, Org. Electron., 22, 132 (2015).Google Scholar
  82. (82).
    H. E. Atyia and N. A. Hegab, Optik, 127, 6232 (2016).Google Scholar
  83. (83).
    Z. M. Dang, J. K. Yuan, S. H. Yao, and R. J. Liao, Adv. Mater., 25, 6334 (2013).Google Scholar
  84. (84).
    I. M. Hodge, M. D. Ingram, and A. R. West, J. Electroanal. Chem. Interfacial Electrochem., 74, 125 (1976).Google Scholar
  85. (85).
    J. Mal and R. N. P. Choudhary, Phase Transitions, 62, 119 (1997).Google Scholar
  86. (86).
    P. B. Bhargav, V. M. Mohan, A. K. Sharma, and V. N. Rao, Curr. Appl. Phys., 9, 165 (2009).Google Scholar
  87. (87).
    D. Fragiadakis, S. Dou, R. H. Colby, and J. Runt, J. Chem. Phys., 130, 064907 (2009).Google Scholar
  88. (88).
    G. Govindaraj, N. Baskaran, K. Shahi, and P. Monoravi, Solid State Ionics, 76, 47 (1995).Google Scholar
  89. (89).
    A. S. Nowick and B. S. Lim, J. Non–Cryst. Solids, 172, 1389 (1994).Google Scholar
  90. (90).
    S. Ramesh, C. W. Liew, and A. K. Arof, J. Non–Cryst. Solids, 357, 3654 (2011).Google Scholar
  91. (91).
    N. Chilaka and S. Ghosh, Electrochim. Acta, 134, 232 (2014).Google Scholar
  92. (92).
    P. G. Bruce and F. M. Gray, Solid State Electrochemistry. Cambridge University Press, Cambridge, 1995.Google Scholar
  93. (93).
    T. Dam, S. S. Jena, and D. K. Pradhan, Phys. Chem. Chem. Phys., 18, 19955 (2016).Google Scholar
  94. (94).
    N. H. LaFemina, Q. Chen, R. H. Colby, and K. T. Mueller, J. Chem. Phys., 145, 114903 (2016).Google Scholar
  95. (95).
    R. Rathika and S. A. Suthanthiraraj, Macromol. Res., 24, 422 (2016).Google Scholar
  96. (96).
    J. Yu, W. Wu, D. Dai, Y. Song, C. Li, and N. Jiang, Macromol. Res., 22, 19 (2014).Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesCentral University of PunjabBathindaIndia

Personalised recommendations