Dithienobenzothiadiazole-Based Donor-Acceptor Polymer: Synthesis and Characterization for Organic Field-Effect Transistor

  • Jun Huang
  • Mingyuan Pei
  • Hee Su Kim
  • Hoichang YangEmail author
  • Do-Hoon HwangEmail author


Conjugated polymers with coplanar conformation backbones can form a closer π-π stacking self-assembly in solid films, producing high charge-carrier mobility in organic field-effect transistors (OFETs). In this work, a new donor-acceptor (D-A) copolymer (PDTFBT-TVT) including (E)-2-(2-(thiophen-2-yl)vinyl)thiophene and dithienobenzothiadiazole conjugated units is synthesized via Stille copolymerization. It is found that PDTFBT-TVT has a good planar backbone structure with an optical band gap of 1.89 eV. Spun-cast film contains preferentially edge-on orientated polymer chains with respect to a polymer-treated SiO2 dielectric, yielding a hole mobility (μh) of 0.06 cm2 V-1 s-1 in OFET. Thermal annealing enhanced the π-conjugated ordering and orientation of PDTFBT-TVT chains in the spun-cast films. The annealed film-based OFETs show a considerable enhancement in μh up to 0.22 cm2 V-1 s-1, as well as high on/off current ratio of > 106.


dithienobenzothiadiazole donor-acceptor copolymer organic field-effect transistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C. D. Dimitrakopoulos, and P. R. Malenfant, Adv. Mater., 14, 99 (2002).CrossRefGoogle Scholar
  2. (2).
    H. Sirringhaus, P. Brown, R. Friend, M. M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R. A. Janssen, E. Meijer, and P. Herwig, Nature, 401, 685 (1999).CrossRefGoogle Scholar
  3. (3).
    H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, Nature, 457, 679 (2009).CrossRefGoogle Scholar
  4. (4).
    C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev., 112, 2208 (2011).CrossRefGoogle Scholar
  5. (5).
    E. Havinga, W. Ten Hoeve, and H. Wynberg, Polym. Bull., 29, 119 (1992).CrossRefGoogle Scholar
  6. (6).
    I. Kang, H.-J. Yun, D. S. Chung, S.-K. Kwon, and Y.-H. Kim, J. Am. Chem. Soc., 135, 14896 (2013).CrossRefGoogle Scholar
  7. (7).
    M. Jang, S. H. Kim, H. K. Lee, Y. H. Kim, and H. Yang, Adv. Funct. Mater., 25, 3833 (2015).CrossRefGoogle Scholar
  8. (8).
    J. H. Dou, Y. Q. Zheng, T. Lei, S. D. Zhang, Z. Wang, W. B. Zhang, J. Y. Wang, and J. Pei, Adv. Funct. Mater., 24, 6270 (2014).CrossRefGoogle Scholar
  9. (9).
    J.-H. Kim, J. B. Park, F. Xu, D. Kim, J. Kwak, A. C. Grimsdale, and D.-H. Hwang, Energy Environ. Sci., 7, 4118 (2014).CrossRefGoogle Scholar
  10. (10).
    G. Kim, S.-J. Kang, G. K. Dutta, Y.-K. Han, T. J. Shin, Y.-Y. Noh, and C. Yang, J. Am. Chem. Soc., 136, 9477 (2014).CrossRefGoogle Scholar
  11. (11).
    J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, Sci. Rep., 2, 754 (2012).CrossRefGoogle Scholar
  12. (12).
    H. R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T. Q. Nguyen, and G. C. Bazan, Adv. Mater., 26, 2993 (2014).CrossRefGoogle Scholar
  13. (13).
    B. Lim, K. J. Baeg, H. G. Jeong, J. Jo, H. Kim, J. W. Park, Y. Y. Noh, D. Vak, J. H. Park, and J. W. Park, Adv. Mater., 21, 2808 (2009).CrossRefGoogle Scholar
  14. (14).
    H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Adv. Mater., 24, 4618 (2012).CrossRefGoogle Scholar
  15. (15).
    F. A. Arroyave, C. A. Richard, and J. R. Reynolds, Org. Lett., 14, 6138 (2012).CrossRefGoogle Scholar
  16. (16).
    C.-Y. Mei, L. Liang, F.-G. Zhao, J.-T. Wang, L.-F. Yu, Y.-X. Li, and W.-S. Li, Macromolecules, 46, 7920 (2013).CrossRefGoogle Scholar
  17. (17).
    Z. Chen, P. Cai, J. Chen, X. Liu, L. Zhang, L. Lan, J. Peng, Y. Ma, and Y. Cao, Adv. Mater., 26, 2586 (2014).CrossRefGoogle Scholar
  18. (18).
    X. Zhang, L. Chen, G. Wang, Z.-G. Zhang, Y. Li, and P. Shen, Synth. Met., 211, 121 (2016).CrossRefGoogle Scholar
  19. (19).
    H. Kim, H. Lee, Y. Jeong, J.-U. Park, D. Seo, H. Heo, D. Lee, Y. Ahn, and Y. Lee, Synth. Met., 211, 75 (2016).CrossRefGoogle Scholar
  20. (20).
    M. Planells, M. Nikolka, M. Hurhangee, P. S. Tuladhar, A. J. White, J. R. Durrant, H. Sirringhaus, and I. McCulloch, J. Mater. Chem. C, 2, 8789 (2014).CrossRefGoogle Scholar
  21. (21).
    J. Huang, Y. Zhu, J. Chen, L. Zhang, J. Peng, and Y. Cao, Macromol. Rapid Commun., 35, 1960 (2014).CrossRefGoogle Scholar
  22. (22).
    M. Pei, J. Huang, M. Jang, J.-H. Kim, M. Lee, J. Chen, D. H. Hwang, and H. Yang, J. Phys. Chem. C, 120, 903 (2016).CrossRefGoogle Scholar
  23. (23).
    D. J. Crouch, P. J. Skabara, J. E. Lohr, J. J. McDouall, M. Heeney, I. McCulloch, D. Sparrowe, M. Shkunov, S. J. Coles, and P. N. Horton, Chem. Mater., 17, 6567 (2005).CrossRefGoogle Scholar
  24. (24).
    M. Jang, S. Kim, H. K. Lee, Y. H. Lee, and H. Yang, Adv. Funct. Mater., 25, 3833 (2015).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemistry Institute for Functional MaterialsPusan National UniversityBusanKorea
  2. 2.Department of Applied Organic Materials EngineeringInha UniversityIncheonKorea

Personalised recommendations