Evaluation of Chondrogenic Differentiation Ability of Bone Marrow Mesenchymal Stem Cells in Silk Fibroin/Gellan Gum Hydrogels Using miR-30

  • Eun Yeong Shin
  • Jong Ho Park
  • Myeong Eun Shin
  • Jeong Eun Song
  • Cristiano Carlomagno
  • Gilson KhangEmail author


The poor proliferative ability of chondrocytes makes complicated the cartilage regeneration after injuries or during the pathological state. Nowadays, stem cells represent a potential tool for different tissues regeneration, including cartilage. Previous studies demonstrated the role of miRNAs (MicroRNAs) in chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the in inhibition of specific genes expression. In this study, miR-30a was used to assess the possible chondrogenic differentiation, in combination with silk fibroin/gellan gum (SF/GG) hydrogels, suitable for cells sustaining and proliferation. The SF/GG hydrogel was fabricated combining 2% of gellan gum with 2% of silk fibroin, exploiting the cationic cross-linking of the polysaccharide. For characterization, the hydrogel was lyophilized and used. Scanning electron microscopy was used to characterize the scaffold morphology, while FT-IR spectroscopy was performed to evaluate the chemical properties. Suitability of the produced scaffold for cells adhesion and nutrient and oxygen perfusion was evaluated through water uptake and overall porosity. BMSCs extracted from rats were transfected with miR-30a mimic and inhibitor. MiR-30a expression rates were measured by real time-quantitative polymerase chain reaction (qPCR) monitoring the expression of cartilage-specific gene through reverse transcription-polymerase chain reaction (RT-PCR). Histological assays were used to identify the chondrogenesis of BMSCs on the SF/GG hydrogel. Our results demonstrated the suitability of the SF/GG hydrolgel for cells adhesion, ingrowth and nutrients perfusion. The exposition of cells to the miR-30a demonstrated the potential role of the molecule in chondrogenic differentiation showing an up regulation of cartilage-specific gene. In conclusion, stem cells transfected with miRNA can positively affect articular cartilage regeneration and the potential of BMSCs-encapsulated hydrogel transfected with miR-30a as a therapeutics for osteoarthritis (OA) has been confirmed.


miR-30a chondrogenesis SF/GG hydrogel articular cartilage tissue engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. C. Nevitt, S. R. Cummings, K. L. Stone, L. Palermo, D. M. Black, D. C. Bauer, H. K. Genant, M. C. Hochberg, K. E. Ensrud, T. A. Hillier, and J. A. Cauley, J. Bone Miner. Res., 20, 131 (2005).CrossRefGoogle Scholar
  2. (2).
    S. Marlovits, P. Zeller, P. Singer, and C. Resinger, V. Vecsei, Eur. J. Radiol., 57, 24 (2006).CrossRefGoogle Scholar
  3. (3).
    S. Wakitani, T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg, J. Bone Joint Surg. Am., 76, 579 (1994).CrossRefGoogle Scholar
  4. (4).
    C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, Tissue Eng., 9, 679 (2003).CrossRefGoogle Scholar
  5. (5).
    B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, Exp. Cell Res., 238, 265 (1998).CrossRefGoogle Scholar
  6. (6).
    A. D. Murdoch, L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows, and T. E. Hardingham, Stem. Cells., 25, 2786 (2007).CrossRefGoogle Scholar
  7. (7).
    J. T. Oliveira, L. S. Gardel, L. Martins, M. E. Gomes, and R. L. Reis, J. Orthop. Res., 28, 1193 (2010).CrossRefGoogle Scholar
  8. (8).
    J. T. Oliveira, T. C. Santos, L. Martins, R. Picciochi, A. P. Marques, A. G. Castro, N. M. Neves, J. F. Mano, and R. L. Reis, Tissue Eng. Part A, 16, 343 (2010).CrossRefGoogle Scholar
  9. (9).
    Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 27, 6064 (2006).CrossRefGoogle Scholar
  10. (10).
    L. D. Koh, Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, M. Low, E. Ye, H. D. Yu, Y. W. Zhang, and M. Y. Han, Prog. Polym. Sci., 46, 86 (2015).CrossRefGoogle Scholar
  11. (11).
    D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, and D. L. Kaplan, Nat. Protoc., 6, 1612 (2011).CrossRefGoogle Scholar
  12. (12).
    J. H. Park, H. Y. Jeon, Y. S. Jeon, H. Park, C. M. Kim, J. E. Song, and G. Khang, Polym. Korea, 42, 298 (2018).CrossRefGoogle Scholar
  13. (13).
    Y. Chen and R. L. Stallings, Cancer Res., 67, 976 (2007).CrossRefGoogle Scholar
  14. (14).
    G. Mao, Z. Zhang, Z. Huang, W. Chen, G. Huang, F. Meng, and Z. Zhang, Y. Kang, Osteoarthr. Cartil., 25, 521 (2017).CrossRefGoogle Scholar
  15. (15).
    S. Paik, H. S. Jung, S. Lee, D. S. Yoon, M. S. Park, and J. W. Lee, Stem Cells Dev., 21, 3298 (2012).CrossRefGoogle Scholar
  16. (16).
    X. Zhou, J. Wang, H. Sun, Y. Qi, W. Xu, D. Luo, X. Jin, C. Li, W. Chen, Z. Lin, F. Li, R. Zhang, and G. Li, Cell Tissue Res., 366, 143 (2016).CrossRefGoogle Scholar
  17. (17).
    Z. L. Xue, Y. L. Meng, and J. H. Ge, Exp. Ther. Med., 14, 1481 (2017).CrossRefGoogle Scholar
  18. (18).
    Y. Tian, R. Guo, B. Shi, L. Chen, L. Yang, and Q. Fu, Life Sci., 148, 220 (2016).CrossRefGoogle Scholar
  19. (19).
    L. De Laporte and L. D. Shea, Adv. Drug Deliv. Rev., 59, 292 (2007).CrossRefGoogle Scholar
  20. (20).
    Q. L. Loh and C. Choong, Tissue Eng. Part B: Rev., 19, 485 (2013).CrossRefGoogle Scholar
  21. (21).
    D. K. Kim, J. I. Kim, T. I. Hwang, B. R. Sim, and G. Khang, ACS Appl. Mater. Interfaces, 9, 1384 (2017).CrossRefGoogle Scholar
  22. (22).
    K. S. Anseth, C. N. Bowman, and L. BrannonPeppas, Biomaterials, 17, 1647 (1996).CrossRefGoogle Scholar
  23. (23).
    B. D. Johnson, D. J. Beebe, and W. Crone, Mater. Sci. Eng. C: Biomin. Supramol. Syst., 24, 575 (2004).CrossRefGoogle Scholar
  24. (24).
    H. J. Sung, C. Meredith, C. Johnson, and Z. S. Galis, Biomaterials, 25, 5735 (2004).CrossRefGoogle Scholar
  25. (25).
    Q. A. Lu, B. Zhang, M. Z. Li, B. Q. Zuo, D. L. Kaplan, Y. L. Huang, and H. S. Zhu, Biomacromolecules, 12, 1080 (2011).CrossRefGoogle Scholar
  26. (26).
    K. S. Lee, H. J. Kim, Q. L. Li, X. Z. Chi, C. Ueta, T. Komori, J. M. Wozney, E. G. Kim, J. Y. Choi, H. M. Ryoo, and S. C. Bae, Mol. Cell. Biol., 20, 8783 (2000).CrossRefGoogle Scholar
  27. (27).
    W. M. Bi, J. M. Deng, Z. P. Zhang, R. R. Behringer, and B. de Crombrugghe, Nat. Genet., 22, 85 (1999).CrossRefGoogle Scholar
  28. (28).
    H. Watanabe, Y. Yamada, and K. Kimata, J. Biochem-Tokyo., 124, 687 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Eun Yeong Shin
    • 1
  • Jong Ho Park
    • 1
  • Myeong Eun Shin
    • 1
  • Jeong Eun Song
    • 1
  • Cristiano Carlomagno
    • 2
    • 3
    • 4
  • Gilson Khang
    • 1
    Email author
  1. 1.Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research CenterChonbuk National UniversityJeonbukKorea
  2. 2.Department of Industrial EngineeringUniversity of TrentoTrentoItaly
  3. 3.BIOTech Research CenterUniversity of TrentoTrentoItaly
  4. 4.European Institute of Excellence on Tissue Engineering and Regenerative MedicineTrentoItaly

Personalised recommendations