Macromolecular Research

, Volume 27, Issue 1, pp 96–104 | Cite as

Synthesis and Properties of Self-healing Metallopolymers with 5-Vinyltetrazole Units and Zn(II)

  • Mifa Chen
  • Wenxiang Wang
  • Hou ChenEmail author
  • Liangjiu BaiEmail author
  • Zhongxin Xue
  • Donglei Wei
  • Huawei Yang
  • Yuzhong Niu


The development of reversible and efficient self-healing materials symbolizes an emerging and challenging task in intelligent materials science. In this paper, a facile one-pot and two-step methodology was developed for the preparation of polyacrylonitrile-r-poly(butyl acrylate) (PAN-r-PnBA) and its subsequent modification. Zinc chloride (ZnCl2) was used as a catalyst to modify cyano groups and generate tetrazole groups of PAN-r-PnBA. Simultaneously, ZnCl2 effectively coordinates with the generated tetrazole group for highly self-healing performance. It was demonstrated that the metallopolymers (MPs) exhibited excellent self-healing properties at ambient temperature. The prepared tetrazole-based MPs can be used as a wide range of self-healing materials.


self-healing polyacrylonitrile metallopolymers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7032_MOESM1_ESM.pdf (4.4 mb)
Supporting Information


  1. (1).
    M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, Self-Healing Mater. Adv. Mater., 22, 5424 (2010).Google Scholar
  2. (2).
    M. Boncheva and G. M. Whitesides, Angew. Chem. Int. Ed., 42, 2644 (2003).CrossRefGoogle Scholar
  3. (3).
    Q. Zhang, L. B. Liu, C. G. Pan, and D. Li, J. Mater. Sci., 53, 27 (2018).CrossRefGoogle Scholar
  4. (4).
    Y. S. Ryu, K. W. Oh, and S. H. Kim, Macromol. Res., 24, 874 (2016).CrossRefGoogle Scholar
  5. (5).
    H. Ullah, K. A. M. Azizli, Z. B. Man, M. B. C. Ismail, and M. I. Khan, Polym. Rev., 56, 429 (2016).CrossRefGoogle Scholar
  6. (6).
    V. K. Thakur and M. R. Kessler, Polymer, 69, 369 (2015).CrossRefGoogle Scholar
  7. (7).
    X. Liu, J. K. Le, and M. R. Kessler, Macromol. Res., 19, 1056 (2011).CrossRefGoogle Scholar
  8. (8).
    N. K. Guimard, K. K. Oehlenschlaeger, J. Zhou, S. Hilf, F. G. Schmidt, and C. Barner-Kowollik, Macromol. Chem. Phys., 213, 131 (2012).CrossRefGoogle Scholar
  9. (9).
    L. Hu, X. Cheng, and A. Zhang, J. Mater. Sci., 50, 2239 (2015).CrossRefGoogle Scholar
  10. (10).
    O. Fifo, K. Ryan, and B. Basu, Smart Mater. Struct., 23, 095017 (2014).CrossRefGoogle Scholar
  11. (11).
    J. K. Lee, S. J. Hong, X. Liu, and S. H. Yoon, Macromol. Res., 12, 478 (2004).CrossRefGoogle Scholar
  12. (12).
    M. M. Caruso, B. J. Blaiszik, H. Jin, S. R. Schelkopf, D. S. Stradley, N. R. Sottos, S. R. White, and J. S. Moore, ACS Appl. Mater. Interfaces, 2, 1195 (2010).CrossRefGoogle Scholar
  13. (13).
    G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, and T. Xie, ACS Macro Lett., 5, 805 (2016).CrossRefGoogle Scholar
  14. (14).
    H. Y. Lee and S. H. Cha, Macromol. Res., 25, 640 (2017).CrossRefGoogle Scholar
  15. (15).
    L. Ling, J. Li, G. Zhang, R. Sun, and C.-P. Wong, Macromol. Res., 26, 365 (2018).CrossRefGoogle Scholar
  16. (16).
    J. Canadell, H. Goossens, and B. Klumperman, Macromolecules, 44, 2536 (2011).CrossRefGoogle Scholar
  17. (17).
    F. Herbst, D. Doehler, P. Michael, and W. H. Binder, Macromol. Rapid Commun., 34, 203 (2013).CrossRefGoogle Scholar
  18. (18).
    Y. Shi, M. Wang, C. Ma, Y. Wang, X. Li, and G. Yu, Nano Lett., 15, 6276 (2015).CrossRefGoogle Scholar
  19. (19).
    B. Yang, H. Zhang, H. Peng, Y. Xu, B. Wu, W. Weng, and L. Li, Polym. Chem., 5, 1945 (2014).CrossRefGoogle Scholar
  20. (20).
    K. R. Hart, N. R. Sottos, and S. R. White, Polymer, 67, 174 (2015).CrossRefGoogle Scholar
  21. (21).
    J. F. Mei, X. Y. Jia, J. C. Lai, Y. Sun, C. H. Li, J. H. Wu, Y. Cao, X. Z. You, and Z. Bao, Macromol. Rapid Commun., 37, 1667 (2016).CrossRefGoogle Scholar
  22. (22).
    S. Bode, L. Zedler, F. H. Schacher, B. Dietzek, M. Schmitt, J. Popp, M. D. Hager, and U. S. Schubert, Adv. Mater., 25, 1634 (2013).CrossRefGoogle Scholar
  23. (23).
    M. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, and C. Weder, Nature, 472, 334 (2011).CrossRefGoogle Scholar
  24. (24).
    D. Mozhdehi, S. Ayala, O. R. Cromwell, and Z. Guan, J. Am. Chem. Soc., 136, 16128 (2014)CrossRefGoogle Scholar
  25. (25).
    S. D. Bergman and F. Wudl, J. Mater. Chem., 18, 41 (2008).CrossRefGoogle Scholar
  26. (26).
    B. Sandmann, B. Happ, S. Kupfer, F. H. Schacher, M. D. Hager, U. S. Schubert, Macromol. Rapid Commun., 36, 604 (2015).CrossRefGoogle Scholar
  27. (27).
    H. Pu, J. Wu, D. Wan, and Z. Chang, J. Membr. Sci., 322, 392 (2008).CrossRefGoogle Scholar
  28. (28).
    N. Tsarevsky, K. Bernaerts, B. Dufour, F. Du Prez, and K. Matyjaszewski, Macromolecules, 37, 9308 (2004).CrossRefGoogle Scholar
  29. (29).
    G. Aromi, L. A. Barrios, O. Roubeau, and P. Gamez, Coord. Chem. Rev., 255, 485 (2011).CrossRefGoogle Scholar
  30. (30).
    J. R. Zeng, C. C. Cheng, C. J. Chang, C. H. Huang, and J. K. Chen, Dyes Pigm., 139, 300 (2017).CrossRefGoogle Scholar
  31. (31).
    H. Lee, S. H. Jung, W. S. Han, J. H. Moon, S. Kang, J. Y. Lee, J. H. Jung, and S. Shinkai, Chem. A: Eur. J., 17, 2823 (2011).Google Scholar
  32. (32).
    W. X. Wang, M. F. Chen, Y. Z. Niu, Q. Tao, L. J. Bai, H. P. Chen, and Z. Cheng, RSC Adv., 7, 47316 (2017).CrossRefGoogle Scholar
  33. (33).
    X. Liu, H. Chen, C. H. Wang, R. J. Qu, C. N. Ji, C. M. Sun, and Y. Zhang, J. Hazard. Mater., 175, 1014 (2010).CrossRefGoogle Scholar
  34. (34).
    G. Zong, H. Chen, R. Qu, C. Wang, and N. Ji, J. Hazard. Mater., 186, 614 (2011).CrossRefGoogle Scholar
  35. (35).
    R. J. Qu, Y. Zhang, W. W. Qu, C. M. Sun, J. Chen, Y. Ping, H. Chen, Y. Z. Niu, Chem. Eng. J., 219, 51 (2013).CrossRefGoogle Scholar
  36. (36).
    S. Majeed, D. Fierro, K. Buhr, J. Wind, and B. Du, J. Membr. Sci., 403, 101 (2012).CrossRefGoogle Scholar
  37. (37).
    A. T. Chien, H. C. Liu, B. A. Newcomb, C. Xiang, J. M. Tour, and S. Kumar, ACS Appl. Mater. Interfaces, 7, 5281 (2015).CrossRefGoogle Scholar
  38. (38).
    L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong, J. Mater. Sci., 49, 463 (2014).CrossRefGoogle Scholar
  39. (39).
    L. B. Krentsel, Y. V. Kudryavtsev, A. I. Rebrov, A. D. Litmanovich, and N. A. Platé, Macromolecules, 34, 5607 (2001).CrossRefGoogle Scholar
  40. (40).
    O. E. Aksoy, B. Ates, and I. Cerkez, J. Mater. Sci., 52, 10013 (2017).CrossRefGoogle Scholar
  41. (41).
    L. Bai, D. Wang, H. Chen, D. Li, Y. Xu, L. Yu, and W. Wang, Polym. Bull., 72, 2455 (2015).CrossRefGoogle Scholar
  42. (42).
    Q. Feng, Q. Wang, B. Tang, A. Wei, X. Wang, Q. Wei, F. Huang, Y. Cai, D. Hou, and S. Bi, Polym. Int., 62, 251 (2013).CrossRefGoogle Scholar
  43. (43).
    Y. Xu, Z. Hao, H. Chen, J. Sun, and D. Wang, Ind. Eng. Chem. Res., 53, 4871 (2014).CrossRefGoogle Scholar
  44. (44).
    R. Voggu, P. Suguna, S. Chandrasekaran, and C. N. R. Rao, Chem. Phys. Lett., 443, 118 (2007).CrossRefGoogle Scholar
  45. (45).
    E. Gliscinska, B. Gutarowska, B. Brycki, and I. Krucinska, J. Appl. Polym. Sci., 128, 767 (2013).CrossRefGoogle Scholar
  46. (46).
    R. R. Kamble, D. B. Biradar, G. Y. Meti, T. Taj, T. Gireesh, I. A. M. Khazi, S. T. Vaidyanathan, R. Mohandoss, B. Sridhar, and V. Parthasarathi, J. Chem. Sci., 123, 393 (2011).CrossRefGoogle Scholar
  47. (47).
    O. G. Mancheno, O. Bistri, and C. Bolm, Org. Lett., 9, 3809 (2007).CrossRefGoogle Scholar
  48. (48).
    M. Nasrollahzadeh, Y. Bayat, D. Habibi, and S. Moshaee, Tetrahedron Lett., 50, 4435 (2009).CrossRefGoogle Scholar
  49. (49).
    G. Q. Chen, Z. J. Xu, Y. Liu, C. Y. Zhou, and C. M. Che, Synlett, 8, 1174 (2011).Google Scholar
  50. (50).
    C. J. Van Oss, M. K. Chaudhury, and R. J. Good, Sep. Sci. Technol., 22, 1515 (1987).CrossRefGoogle Scholar
  51. (51).
    D. D. Zhu, Q. Ye, X. M. Lu, and Q. H. Lu, Polym. Chem., 6, 5086 (2015)CrossRefGoogle Scholar
  52. (52).
    Z. Gu, S. H. Li, F. L. Zhang, and S. T. Wang, Adv. Sci., 3, 1500327 (2016)CrossRefGoogle Scholar
  53. (53).
    H. B. Zeng, J. Huang, Y. Tian, L. Li, M. V. Tirrell, and J. N. Israelachvili, Macromolecules, 49, 5223 (2016).CrossRefGoogle Scholar
  54. (54).
    A. Faghihnejad, K. E. Feldman, J. Yu, M. V. Tirrell, J. N. Israelachvili, C. J. Hawker, E. J. Kramer, and H. Zeng, Adv. Funct. Mater., 24, 2322 (2014).CrossRefGoogle Scholar
  55. (55).
    C. J. van Oss, M. Chaudhury, and R. J. Good, Adv. Colloid. Interface Sci., 28, 35 (1987).CrossRefGoogle Scholar
  56. (56).
    M. Krogsgaard, M. R. Hansen, and H. Birkedal, J. Mater. Chem. B, 2, 8292 (2014).CrossRefGoogle Scholar
  57. (57).
    Y. Z. Niu, R. J. Qu, H. Chen, L. Mu, X. G. Liu, T. Wang, Y. Zhang, and C. M. Sun, J. Hazard. Mater., 278, 267 (2014).CrossRefGoogle Scholar
  58. (58).
    Y. Z. Niu, R. J. Qu, C. M. Sun, C. H. Wang, H. Chen, C. N. Ji, Y. Zhang, X. Shao, and F. L. Bu, J. Hazard. Mater., 244, 276 (2013).CrossRefGoogle Scholar
  59. (59).
    H. Chen, Y. Liang, M. Wang, P. Lv, and Y. Xuan, Chem. Eng. J., 147, 297 (2009).CrossRefGoogle Scholar
  60. (60).
    S. X. Zhang, Y. Y. Zhang, J. S. Liu, Q. Xu, H. Q. Xiao, X. Y. Wang, H. Xu, and J. Zhou, Chem. Eng. J., 226, 30 (2013).CrossRefGoogle Scholar
  61. (61).
    Y. Liu, L. Xu, J. S. Liu, X. Y. Liu, C. H. Chen, G. Y. Li, and Y. F. Meng, Chem. Eng. J., 285, 698 (2016).CrossRefGoogle Scholar
  62. (62).
    S. Schmidt, A. Reinecke, F. Wojcik, D. Pussak, L. Hartmann, and M. J. Harrington, Biomacromolecules, 15, 1644 (2014).CrossRefGoogle Scholar
  63. (63).
    G. Hong, H. Zhang, Y. Lin, Y. Chen, Y. Xu, W. Weng, and H. Xia, Macromolecules, 46, 8649 (2013).CrossRefGoogle Scholar
  64. (64).
    W. Maret and Y. Li, Chem. Rev., 109, 4682 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Mifa Chen
    • 1
    • 2
  • Wenxiang Wang
    • 1
    • 2
  • Hou Chen
    • 1
    • 2
    Email author
  • Liangjiu Bai
    • 1
    • 2
    Email author
  • Zhongxin Xue
    • 1
    • 2
  • Donglei Wei
    • 1
    • 2
  • Huawei Yang
    • 1
    • 2
  • Yuzhong Niu
    • 1
    • 2
  1. 1.School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong ProvinceLudong UniversityYantaiP. R. China
  2. 2.Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their CompositesLudong UniversityYantaiP. R. China

Personalised recommendations