Advertisement

Macromolecular Research

, Volume 27, Issue 1, pp 25–32 | Cite as

Synthesis of a Novel Fluorescent Cyanide Chemosensor Based on Photoswitching Poly(pyrene-1-ylmethyl-methacrylate-random-methyl methacrylate-random-methacrylate spirooxazine)

  • Hoan Minh Tran
  • Tam Huu Nguyen
  • Viet Quoc Nguyen
  • Phuc Huynh Tran
  • Linh Duy Thai
  • Thuy Thu Truong
  • Le-Thu T. Nguyen
  • Ha Tran NguyenEmail author
Article
  • 69 Downloads

Abstract

The photoswitching poly(pyrene-1-ylmethyl-methacrylate-random-methyl methacrylate-random-methacrylate spirooxazine) was synthesized via atom transfer radical polymerization and characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, and differential scanning calorimetry (DSC). The obtained copolymer exhibited the capability of erasable and rewritable photoimaging, making it a potential candidate for optical data storage materials. Moreover, the copolymer also showed the sensing ability for cyanide anions effect in aqueous solutions.

Keywords

photoswitching polymers spirooxazine atom transfer radical polymerization chemosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7030_MOESM1_ESM.pdf (864 kb)
Supporting Information

References

  1. (1).
    O. Emanuele and S. Paolo, Adv. Mater., 26, 1827 (2014).CrossRefGoogle Scholar
  2. (2).
    T. Mizokuro, H. Mochizuki, A. Kobayashi, S. Horiuchi, N. Yamamoto, N. Tanigaki, and T. Hiraga, Chem. Mater., 16, 3469 (2004).CrossRefGoogle Scholar
  3. (3).
    Z. Junji, Z. Qi, and T. He, Adv. Mater., 25, 378 (2013).CrossRefGoogle Scholar
  4. (4).
    E. Fischer and Y. Hirshberg, Royal Soc. Chem., 4522 (1952).Google Scholar
  5. (5).
    M. Dübner, V. J. Cadarso, T. N. Gevrek, A. Sanyal, N. D. Spencer, and C. Padeste, ACS Appl. Mater. Interfaces, 9, 9245 (2017).CrossRefGoogle Scholar
  6. (6).
    C. Ventura, P. Thornton, S. Giordani, and A. Heise, Polym. Chem., 5, 6318 (2014).CrossRefGoogle Scholar
  7. (7).
    M. R. di Nunzio, P. L. Gentili, A. Romani, and G. Favaro, J. Phys. Chem. C, 114, 6123 (2010).CrossRefGoogle Scholar
  8. (8).
    V. A. Lokshin, A. Samat, and A. V. Metelitsa, Russ. Chem. Rev., 71, 893 (2002).CrossRefGoogle Scholar
  9. (9).
    H. Bouas-Laurent and H. Dürr, Pure Appl. Chem., 73, 639 (2001).CrossRefGoogle Scholar
  10. (10).
    A. J. Myles, T. J. Wigglesworth, and N. R. Branda, Adv. Mater., 15, 745 (2003).CrossRefGoogle Scholar
  11. (11).
    S.-J. Lim, J. Seo, and S. Y. Park, J. Am. Chem. Soc., 128, 14542 (2006).CrossRefGoogle Scholar
  12. (12).
    S.-J. Lim, B.-K. An, and S. Y. Park, Macromolecules, 38, 6236 (2005).CrossRefGoogle Scholar
  13. (13).
    T. Feczkó, O. Varga, M. Kovács, T. Vidóczy, and B. Voncina, J. Photochem. Photobiol. A: Chem., 222, 293 (2011).CrossRefGoogle Scholar
  14. (14).
    W. Shaodong, L. Xinghai, Y. Mei, Z. Yu, X. Keyu, and T. Rong, Packaging Technol. Sci., 28, 839 (2015).CrossRefGoogle Scholar
  15. (15).
    G. Berkovic, V. Krongauz, and V. Weiss, Chem. Rev., 100, 1741 (2000).CrossRefGoogle Scholar
  16. (16).
    J.-S. Lin, Eur. Polym. J., 39, 1693 (2003).CrossRefGoogle Scholar
  17. (17).
    K. Ock, N. Jo, J. Kim, S. Kim, and K. Koh, Synth. Met., 117, 131 (2001).CrossRefGoogle Scholar
  18. (18).
    P. J. Castro, I. Gómez, M. Cossi, and M. Reguero, J. Phys. Chem. A, 116, 8148 (2012).CrossRefGoogle Scholar
  19. (19).
    T. Suzuki, F.-T. Lin, S. Priyadashy, and S. G. Weber, Chem. Commun., 2685 (1998).Google Scholar
  20. (20).
    M. Tomasulo, S. Sortino, A. J. P. White, and F. M. Raymo, J. Org. Chem., 70, 8180 (2005).CrossRefGoogle Scholar
  21. (21).
    X. Meng, W. Zhu, Z. Guo, J. Wang, and H. Tian, Tetrahedron, 62, 9840 (2006).CrossRefGoogle Scholar
  22. (22).
    S.-H. Kim, C.-H. Ahn, S.-R. Keum, and K. Koh, Dyes Pigm., 65, 179 (2005).CrossRefGoogle Scholar
  23. (23).
    M. M. Paquette, B. O. Patrick, and N. L. Frank, J. Am. Chem. Soc., 133, 10081 (2011).CrossRefGoogle Scholar
  24. (24).
    M. Tanaka, K. Kamada, H. Ando, T. Kitagaki, Y. Shibutani, S. Yajima, H. Sakamoto, and K. Kimura, Chem. Commun., 1453 (1999).Google Scholar
  25. (25).
    J. T. C. Wojtyk, E. Buncel, and P. M. Kazmaier, Chem. Commun., 1703 (1998).Google Scholar
  26. (26).
    M. Tanaka, M. Nakamura, M. A. A. Salhin, T. Ikeda, K. Kamada, H. Ando, Y. Shibutani, and K. Kimura, J. Org. Chem., 66, 1533 (2001).CrossRefGoogle Scholar
  27. (27).
    Y.-Y. Shi, L. Wu, J. Gao, and M. Shi, J. Macromol. Sci., Part A, 54, 853 (2017).CrossRefGoogle Scholar
  28. (28).
    M. Beija, M.-T. Charreyre, and J. M. G. Martinho, Prog. Polym. Sci., 36, 568 (2011).CrossRefGoogle Scholar
  29. (29).
    S. Yitzchaik, J. Ratner, F. Buchholtz, and V. Krongauz, Liq. Cryst., 8, 677 (1990).CrossRefGoogle Scholar
  30. (30).
    X. Li, C. Li, S. Wang, H. Dong, X. Ma, and D. Cao, Dyes Pigm., 142, 481 (2017).CrossRefGoogle Scholar
  31. (31).
    F. Krohm, J. Kind, R. Savka, J. Alcaraz, D. Herold, H. Plenio, C. M. Thiele, and A. Andrieu-Brunsen, J. Mater. Chem. C, 4, 4067 (2016).CrossRefGoogle Scholar
  32. (32).
    G. K. Such, R. A. Evans, and T. P. Davis, Mol. Cryst. Liq. Cryst., 430, 273 (2005).CrossRefGoogle Scholar
  33. (33).
    G. K. Such, R. A. Evans, and T. P. Davis, Macromolecules, 39, 1391 (2006).CrossRefGoogle Scholar
  34. (34).
    G. K. Such, R. A. Evans, and T. P. Davis, Macromolecules, 37, 9664 (2004).CrossRefGoogle Scholar
  35. (35).
    D. S. Achilleos and M. Vamvakaki, Macromolecules, 43, 7073 (2010).CrossRefGoogle Scholar
  36. (36).
    S. Chen, H. Liu, H. Cui, J. Hu, and H. Cai, Des. Monomers Polym., 18, 574 (2015).CrossRefGoogle Scholar
  37. (37).
    H. T. Nguyen, L.-T. T. Nguyen, and T. V. Le, Des. Monomers Polym., 18, 271 (2015).CrossRefGoogle Scholar
  38. (38).
    Y. Shiraishi, K. Adachi, M. Itoh, and T. Hirai, Org. Lett., 11, 3482 (2009).CrossRefGoogle Scholar
  39. (39).
    S. Zhu, M. Li, L. Sheng, P. Chen, Y. Zhang, and S. X.-A. Zhang, Analyst, 137, 5581 (2012).CrossRefGoogle Scholar
  40. (40).
    I. S. Park, Y.-S. Jung, K.-J. Lee, and J.-M. Kim, Chem. Commun., 46, 2859 (2010).CrossRefGoogle Scholar
  41. (41).
    K. Prakash, P. Ranjan Sahoo, and S. Kumar, Sens. Actuators B, 237, 856 (2016).CrossRefGoogle Scholar
  42. (42).
    Y. Shiraishi, S. Sumiya, K. Manabe, and T. Hirai, ACS Appl. Mater. Interfaces, 3, 4649 (2011).CrossRefGoogle Scholar
  43. (43).
    G. Lin, H. Ding, D. Yuan, B. Wang, and C. Wang, J. Am. Chem. Soc., 138, 3302 (2016).CrossRefGoogle Scholar
  44. (44).
    J. Chao, H. Wang, Y. Zhang, C. Yin, F. Huo, J. Sun, and M. Zhao, New J. Chem., 42, 3322 (2018).CrossRefGoogle Scholar
  45. (45).
    M. Shyamal, P. Mazumdar, S. Maity, G. P. Sahoo, G. Salgado-Morán, and A. Misra, J. Phys. Chem. A, 120, 210 (2016).CrossRefGoogle Scholar
  46. (46).
    A. Senthamizhan, A. Celebioglu, S. Bayir, M. Gorur, E. Doganci, F. Yilmaz, and T. Uyar, ACS Appl. Mater. Interfaces, 7, 21038 (2015).CrossRefGoogle Scholar
  47. (47).
    B. K. Rani and S. A. John, Biosens. Bioelectron., 83, 237 (2016).CrossRefGoogle Scholar
  48. (48).
    T. H. Nguyen, L.-T. T. Nguyen, V. Q. Nguyen, L. Ngoc Tan Phan, G. Zhang, T. Yokozawa, D. Thuy Thi Phung, and H. Tran Nguyen, Polym. Chem., 9, 2484 (2018).CrossRefGoogle Scholar
  49. (49).
    J. Berthet, S. Delbaere, L. M. Carvalho, G. Vermeersch, and P. J. Coelho, Tetrahedron Lett., 47, 4903 (2006).CrossRefGoogle Scholar
  50. (50).
    J. You, J. A. Yoon, J. Kim, C.-F. Huang, K. Matyjaszewski, and E. Kim, Chem. Mater., 22, 4426 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Hoan Minh Tran
    • 1
  • Tam Huu Nguyen
    • 1
  • Viet Quoc Nguyen
    • 1
  • Phuc Huynh Tran
    • 3
  • Linh Duy Thai
    • 3
  • Thuy Thu Truong
    • 1
  • Le-Thu T. Nguyen
    • 1
  • Ha Tran Nguyen
    • 1
    • 2
    Email author
  1. 1.Faculty of Materials TechnologyHo Chi Minh City University of Technology (HCMUT), Vietnam National UniversityHo Chi Minh CityVietnam
  2. 2.Materials Technology Key Laboratory (Mtlab)Vietnam National University - Ho Chi Minh CityHo Chi Minh CityVietnam
  3. 3.Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT), Vietnam National UniversityHo Chi Minh CityVietnam

Personalised recommendations