Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1135–1142 | Cite as

Bioreducible Polyspermine-Based Gene Carriers for Efficient siRNA Delivery: Effects of PEG Conjugation on Gene Silencing Efficiency

  • Suk Ho Bhang
  • Kyuwon Kim
  • Won Jong Rhee
  • Min Suk ShimEmail author
Article
  • 118 Downloads

Abstract

A polyspermine-derived bioreducible polymer was synthesized as efficient siRNA carriers. Spermine was polymerized using disulfide-bearing cross-linkers, resulting in poly(disulfide spermine) (PDS). PDS was also conjugated with poly(ethylene glycol) (PEG) to tailor siRNA condensation efficiency of the polymer. PEG-conjugated PDS (PEG-PDS) was able to condense siRNA into nano-sized polyplexes at high N/P ratios. siRNA condensation efficiency of PDS was reduced by PEGylation due to its weakened interaction with siRNA caused by its decreased cationic charge density. An ethidium bromide exclusion assay demonstrated that siRNA was more efficiently released from the less stable PEG-PDS polyplexes compared to stable PDS polyplexes. In addition, bioreducible siRNA/PEG-PDS polyplexes were efficiently disassembled in the reductive conditions, leading to facilitated siRNA release into the cytoplasm. The lowered siRNA condensation but efficient cytoplasmic release of siRNA by PEG-PDS induced higher gene silencing efficiency in comparison with PDS. Moreover, PEG-PDS exhibited lower cytotoxicity compared to PDS and non-biodegradable branched polyethylenimine. These results suggest that siRNA delivery efficiency of cationic gene carriers can be improved by tailoring their siRNA complexation through PEG conjugation. This study demonstrates that bioreducible PEG-PDS is a promising candidate for safe and efficient siRNA delivery.

Keywords

bioreducible poly(ethylene glycol) polyspermine siRNA targeted therapy 

References

  1. (1).
    S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, Nature, 411, 494 (2001).CrossRefGoogle Scholar
  2. (2).
    D. H. Kim and J. J. Rossi, Nat. Rev. Genet., 8, 173 (2007).CrossRefGoogle Scholar
  3. (3).
    K. A. Whitehead, R. Langer, and D. G. Anderson, Nat. Rev. Drug Discov., 8, 129 (2009).CrossRefGoogle Scholar
  4. (4).
    M. S. Shim and Y. J. Kwon, FEBS J., 277, 4814 (2010).CrossRefGoogle Scholar
  5. (5).
    D. J. Gary, N. Puri, and Y. Y. Won, J. Control. Release, 121, 64 (2007).CrossRefGoogle Scholar
  6. (6).
    D. Luo and W. M. Saltzman, Nat. Biotechnol., 18, 33 (2000).CrossRefGoogle Scholar
  7. (7).
    S. M. Sarett, C. E. Nelson, and C. L. Duvall, J. Control. Release, 218, 94 (2015).CrossRefGoogle Scholar
  8. (8).
    S. Zhang, B. Zhao, H. Jiang, B. Wang, and B. Ma, J. Control. Release, 123, 1 (2007).CrossRefGoogle Scholar
  9. (9).
    K. A. Howard and J. Kjems, Expert Opin. Biol. Ther., 7, 1811 (2007).CrossRefGoogle Scholar
  10. (10).
    C. Choi, J.-P. Nam, and J.-W. Nah, J. Ind. Eng. Chem., 33, 1 (2016).CrossRefGoogle Scholar
  11. (11).
    W. T. Godbey, K. K. Wu, and A. G. Mikos, J. Biomed. Mater. Res., 45, 268 (1999).CrossRefGoogle Scholar
  12. (12).
    D. Fischer, T. Bieber, Y. Li, H. Elsässer, and T. Kissel, Pharm. Res., 16, 1273 (1999).CrossRefGoogle Scholar
  13. (13).
    S. Alfei and S. Castellaro, Macromol. Res., 25, 1172 (2017).CrossRefGoogle Scholar
  14. (14).
    D. Jere, C.-X. Xu, R. Arote, C.-H. Yun, M.-H. Cho, and C.-S. Cho, Biomaterials, 29, 2535 (2008).CrossRefGoogle Scholar
  15. (15).
    M. S. Shim and Y. J. Kwon, Polym. Chem., 3, 2570 (2012).CrossRefGoogle Scholar
  16. (16).
    M. S. Shim, S.-S. Chang, and Y. J. Kwon, Biomater. Sci., 2, 35 (2014).CrossRefGoogle Scholar
  17. (17).
    M. Piest, C. Lin, M. A. Mateos-Timoneda, M. C. Lok, W. E. Hennink, J. Feijen, and J. F. J. Engbersen, J. Control. Release, 130, 38 (2008).CrossRefGoogle Scholar
  18. (18).
    K. Nam, J. W. Park, H. Bark, J. Han, J.-W. Nah, M.-K. Jang, and S. W. Kim, Macromol. Res., 22, 370 (2014).CrossRefGoogle Scholar
  19. (19).
    J. G. Hardy, M. A. Kostiainen, D. K. Smith, N. P. Gabrielson, and D. W. Pack, Bioconjug. Chem., 17, 172 (2006).CrossRefGoogle Scholar
  20. (20).
    J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Biochem. J., 377, 159 (2004).CrossRefGoogle Scholar
  21. (21).
    M. S. Shim, X. Wang, R. Ragan, and Y. J. Kwon, Microsc. Res. Tech., 73, 845 (2010).CrossRefGoogle Scholar
  22. (22).
    C. Kim, Y. Lee, S. H. Lee, J. S. Kim, J. H. Jeong, and T. G. Park, Macromol. Res., 19, 166 (2011).CrossRefGoogle Scholar
  23. (23).
    M. Dominska and D. M. Dykxhoorn, J. Cell Sci., 123, 1183 (2010).CrossRefGoogle Scholar
  24. (24).
    D. D. Dunlap, A. Maggi, M. R. Soria, and L. Monaco, Nucleic Acids Res., 25, 3095 (1997).CrossRefGoogle Scholar
  25. (25).
    A. Detzer, M. Overhoff, W. Wünsche, M. Rompf, J. J. Turner, G. D. Ivanova, M. J. Gait, and G. Sczakiel, RNA, 15, 627 (2009).CrossRefGoogle Scholar
  26. (26).
    N. A. Jones, I. R. C. Hill, S. Stolnik, S. F. Bignotti, S. S. Davis, and M. C. Garnett, Biochim. Biophys. Acta, 1517, 1 (2000).CrossRefGoogle Scholar
  27. (27).
    D. J. Chen, B. S. Majors, A. Zelikin, and D. Putnam, J. Control. Release, 103, 273 (2005).CrossRefGoogle Scholar
  28. (28).
    M. Dearnley, N. P. Reynolds, P. Cass, X. Wei, S. Shi, A. A. Mohammed, T. Le, P. Gunatillake, M. L. Tizard, S. H. Thang, and T. M. Hinton, Biomacromolecules, 17, 3532 (2016).CrossRefGoogle Scholar
  29. (29).
    Y. Sato, H. Hatakeyama, M. Hyodo, and H. Harashima, Mol. Ther., 24, 788 (2016).CrossRefGoogle Scholar
  30. (30).
    S. Mao, M. Neu, O. Germershaus, O. Merkel, J. Sitterberg, U. Bakowsky, and T. Kissel, Bioconjug. Chem., 17, 1209 (2006).CrossRefGoogle Scholar
  31. (31).
    E. Fröhlich, Int. J. Nanomedicine, 7, 5577 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Suk Ho Bhang
    • 1
  • Kyuwon Kim
    • 2
  • Won Jong Rhee
    • 3
  • Min Suk Shim
    • 3
  1. 1.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonKorea
  2. 2.Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of ChemistryIncheon National UniversityIncheonKorea
  3. 3.Division of BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations