Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1150–1159 | Cite as

Label-Free Detection of Dopamine based on Photoluminescence of Boronic Acid-Functionalized Carbon Dots in Solid-State Polyethylene Glycol Thin Film

  • Ga-Young Lee
  • Sundas Munir
  • Soo-Young ParkEmail author
Article
  • 140 Downloads

Abstract

Reactive boronic acid-functionalized carbon dots (rBA-CDs) for dopamine (DA) detection were prepared by solvothermal synthesis of CDs using lactose and diacrylate polyethylene glycol (DAPEG) and subsequent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide coupling with 3-aminophenylboronic acid. The solid-state thin film of the DAPEG/rBA-CD composite was prepared on an acrylate-functionalized glass substrate by ultraviolet curing. The rBA-CD in the solid-state PEG thin film on the glass substrate showed excellent DA detection performance in the presence of small amounts of DA by fluorescence color change from blue to green when excited at 360 nm. The fluorescence intensity increased as the DA concentration increased, with a linear detection range of 0–40 μM and a limit of detection of 0.2 μM. The developed solid-state fluorescent sensor offered high selectivity for DA over other components (e.g., glucose, lactose, ascorbic acid, urea, and uric acid) in blood. Furthermore, real samples of human serum spiked with dopamine showed excellent recovery. Thus, the designed reactive rBA-CDs can be utilized as a DA biosensor on a solid substrate after their immobilization. Owing to their good water dispersity, fluorescence color change, and reactive nature, rBA-CDs may provide a new strategy for the naked eye detection of dopamine.

Keywords

carbon dot boronic acid biosensor dopamine quantum dot 

Supplementary material

13233_2019_7025_MOESM1_ESM.pdf (1.5 mb)
Supporting Information

References

  1. (1).
    F. Mora, G. Segovia, A. del Arco, M. de Blas, and P. Garrido, Brain Res., 1476, 71 (2012).CrossRefGoogle Scholar
  2. (2).
    B. E. Toth, M. Vecsernyes, T. Zelles, K. Kadar, and G. M. Nagy, Adv. Neuroimmune Biol., 3, 111 (2012).Google Scholar
  3. (3).
    S. Moriya, J. Inamasu, M. Oheda, and Y. Hirose, Ann. Pediatr. Cardiol., 8, 240 (2015).CrossRefGoogle Scholar
  4. (4).
    L. C. Schwab, S. N. Garas, J. Drouin-Ouellet, S. L. Mason, S. R. Stott, and R. A. Barker, Expert Rev. Neurothe., 15, 445 (2015).CrossRefGoogle Scholar
  5. (5).
    D. E. Lilienfeld and D. P. Perl, Neuroepidemiology, 12, 219 (1993).CrossRefGoogle Scholar
  6. (6).
    B.-R. Li, Y.-J. Hsieh, Y.-X. Chen, Y.-T. Chung, C.-Y. Pan, and Y.-T. Chen, J. Am. Chem. Soc., 135, 16034 (2013).CrossRefGoogle Scholar
  7. (7).
    T. Pradhan, H. S. Jung, J. H. Jang, T. W. Kim, C. Kang, and J. S. Kim, Chem. Soc. Rev., 43, 4684 (2014).CrossRefGoogle Scholar
  8. (8).
    S. Shi, L. Wang, R. Su, B. Liu, R. Huang, W. Qi, and Z. He, Biosens. Bioelectron., 74, 454 (2015).CrossRefGoogle Scholar
  9. (9).
    B. Verastegui-Omaña, M. Palomar-Pardavé, A. Rojas-Hernández, S. C. Avendaño, M. Romero-Romo, and M. T. Ramírez-Silva, Spectrochim. Acta A, 143, 187 (2015).CrossRefGoogle Scholar
  10. (10).
    D. Zhang, L. Wu, D. S. L. Chow, V. H. Tam, and D. R. Rios, J. Pharm. Biomed. Anal., 117, 227 (2016).CrossRefGoogle Scholar
  11. (11).
    G. D. Watt, Anal. Biochem., 99, 399 (1979).CrossRefGoogle Scholar
  12. (12).
    M. E. Germain and M. J. Knapp, Chem. Soc. Rev., 38, 2543 (2009).CrossRefGoogle Scholar
  13. (13).
    S. N. Baker and G. A. Baker, Angew. Chem. Int. Ed., 49, 6726 (2010).CrossRefGoogle Scholar
  14. (14).
    P. Zhang, W. Li, X. Zhai, C. Liu, L. Dai, and W. Liu, Chem. Commun., 48, 10431 (2012).CrossRefGoogle Scholar
  15. (15).
    H. M. R. Gonçalves, A. J. Duarte, and J. C. G. Esteves da Silva, Biosens. Bioelectron., 26, 1302 (2010).CrossRefGoogle Scholar
  16. (16).
    X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004).CrossRefGoogle Scholar
  17. (17).
    S. Hu, J. Liu, J. Yang, Y. Wang, and S. Cao, J. Nanoparticle Res., 13, 7247 (2011).CrossRefGoogle Scholar
  18. (18).
    S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, J. Phys. Chem. C, 113, 18546 (2009).CrossRefGoogle Scholar
  19. (19).
    L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang, and S. Chen, Chem. Mater., 21, 2803 (2009).CrossRefGoogle Scholar
  20. (20).
    L. Bao, Z.-L. Zhang, Z.-Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, and D.-W. Pang, Adv. Mater., 23, 5801 (2011).CrossRefGoogle Scholar
  21. (21).
    V. Strauss, J. T. Margraf, C. Dolle, B. Butz, T. J. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, and D. M. Guldi, J. Am. Chem. Soc., 136, 17308 (2014).CrossRefGoogle Scholar
  22. (22).
    H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Chem. Commun., 5118 (2009).Google Scholar
  23. (23).
    Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, and G. Chen, Anal. Chem., 84, 8378 (2012).CrossRefGoogle Scholar
  24. (24).
    S. Palanisamy, X. Zhang, and T. He, J. Mater. Chem. B, 3, 6019 (2015).CrossRefGoogle Scholar
  25. (25).
    W. Scarano, H. T. T. Duong, H. Lu, P. L. De Souza, and M. H. Stenzel, Biomacromolecules, 14, 962 (2013).CrossRefGoogle Scholar
  26. (26).
    A. Coskun and E. U. Akkaya, Org. Lett., 6, 3107 (2004).CrossRefGoogle Scholar
  27. (27).
    K. E. Secor and T. E. Glass, Org. Lett., 6, 3727 (2004).CrossRefGoogle Scholar
  28. (28).
    S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, and B. Yang, Angew. Chem. Int. Ed., 52, 3953 (2013).CrossRefGoogle Scholar
  29. (29).
    M.-H. Yang, S.-S. Yuan, T.-W. Chung, S.-B. Jong, C.-Y. Lu, W.-C. Tsai, W.- C. Chen, P.-C. Lin, P.-W. Chiang, and Y.-C. Tyan, Biomed Res. Int., 2014, 209469 (2014).Google Scholar
  30. (30).
    X. Liu, X. Hu, Z. Xie, P. Chen, X. Sun, J. Yan, and S. Zhou, Anal. Methods, 8, 3236 (2016).CrossRefGoogle Scholar
  31. (31).
    J. Zhao, C. Liu, Y. Li, J. Liang, J. Liu, T. Qian, J. Ding, and Y.-C. Cao, Luminescence, 32, 625 (2017).CrossRefGoogle Scholar
  32. (32).
    Y. Song, S. Zhu, and B. Yang, RSC Adv., 4, 27184 (2014).CrossRefGoogle Scholar
  33. (33).
    J. S. Anjali Devi, A. H. Anulekshmi, S. Salini, R. S. Aparna, and S. George, Microchim. Acta, 184, 4081 (2017).CrossRefGoogle Scholar
  34. (34).
    Y. Liu, N. Xiao, N. Gong, H. Wang, X. Shi, W. Gu, and L. Ye, Carbon, 68, 258 (2014).CrossRefGoogle Scholar
  35. (35).
    C. Nazli, T. I. Ergenc, Y. Yar, H. Y. Acar, and S. Kizilel, Int. J. Nanomedicine, 7, 1903 (2012).Google Scholar
  36. (36).
    T. T. Bui and S.-Y. Park, Green Chem., 18, 4245 (2016).CrossRefGoogle Scholar
  37. (37).
    M.-J. Cho and S.-Y. Park, ACS Appl. Mater. Interfaces, 9, 24169 (2017).CrossRefGoogle Scholar
  38. (38).
    M. Fu, F. Ehrat, Y. Wang, K. Z. Milowska, C. Reckmeier, A. L. Rogach, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, Nano Lett., 15, 6030 (2015).CrossRefGoogle Scholar
  39. (39).
    H. Nie, M. Li, Q. Li, S. Liang, Y. Tan, L. Sheng, W. Shi, and S. X.-A. Zhang, Chem. Mater., 26, 3104 (2014).CrossRefGoogle Scholar
  40. (40).
    M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, and A. P. Demchenko, Phys. Chem. Chem. Phys., 16, 16075 (2014).CrossRefGoogle Scholar
  41. (41).
    X. Wen, P. Yu, Y.-R. Toh, X. Hao, and J. Tang, Adv. Opt. Mater., 1, 173 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Polymer Science & Engineering, Polymeric Nanomaterials Laboratory, School of Applied Chemical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations