Advertisement

Macromolecular Research

, Volume 26, Issue 13, pp 1212–1218 | Cite as

Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending

  • Jun ZouEmail author
  • Yingzhen Qi
  • Lele Su
  • Yun Wei
  • Zhaolei Li
  • Haiqing Xu
Article
  • 81 Downloads

Abstract

An aliphatic polyester based poly(ester amide)s (PEA) consisting of poly (L-lactic acid) and poly(butylene succinate) was successfully prepared via chain extension reaction of poly(L-lactic acid)-dicarboxylic acid (PLLA-COOH) and poly(butylene succinate)-dicarboxylic acid (PBS-COOH) using 2,2′-bis(2-oxazoline) as a chain extender. PLLA-COOH was obtained by direct polycondensation of L-lactic acid in the presence of 1, 4-succinic acid. PBS-COOH was synthesized by condensation polymerization of 1,4-butylene glycol with excessive succinic acid. The structures of PLLA-COOH, PBS-COOH, and PEAs were characterized by fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1H NMR). The molar masses were determined by gel permeation chromatography (GPC). The thermal properties of PLLA-COOH, PBS-COOH, and PEAs were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The lattice parameters of PLLA-COOH, PBS-COOH, and PEAs were investigated by X-ray diffraction (XRD). Furthermore, The mechanical properties were characterized by tensile testing and notch Izod impact testing. The FTIR and 1H NMR results demonstrated the formation of PLLA-COOH, PBS-COOH, and PEAs. The GPC measurements showed that the molar masses of copolymer PEAs decreased with increasing PBS-COOH content. The TGA analysis confirmed that the introduction of PBS improved the thermal properties. DSC data indicated that the melting temperatures of the PEAs were lower than that of the prepolymers. The results of XRD suggested that the PLLA crystal structures was destroyed by the PBS units, and the crystallization of the PEAs mainly attributed to the PBS chain segments.The introduction of PBS units into the polymer structure improved the toughness of PLLA, which was detected in mechanical properties.

Keywords

poly(ester amide) poly(l-lactic acid) poly(butylene succinate) 2,2′-bis(2-oxazoline) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Lunt, Polym Degrad. Stab., 59, 145 (1998).CrossRefGoogle Scholar
  2. (2).
    M. J. Soares, P.-K. Dannecker, C. Vilela, J. Bastos, M. A. R. Meier, and A. F. Sousa, Eur. Polym. J., 90, 301 (2017).CrossRefGoogle Scholar
  3. (3).
    K. M. Zia, A. Noreen, M. Zuber, S. Tabasum, and M. Mujahid, Int. J. Biol. Macromol., 82, 1028 (2016).CrossRefGoogle Scholar
  4. (4).
    V. Nagarajan, K. Zhang, M. Misra, and A. K. Mohanty, ACS Appl. Mater. Interfaces, 7, 11203 (2015).CrossRefGoogle Scholar
  5. (5).
    L. Sha, Z. Chen, Z. Chen, A. Zhang, and Z. Yang, Int. J. Polym. Sci., 2016, 1 (2016).CrossRefGoogle Scholar
  6. (6).
    W. Zhong, J. Ge, and Z. Gu, J. Appl. Polym. Sci., 74, 2546 (2015).CrossRefGoogle Scholar
  7. (7).
    R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Prog. Polym. Sci., 35, 338 (2010).CrossRefGoogle Scholar
  8. (8).
    L. Liu, J. Yu, L. Cheng, and W. Qu, Compos. Part A: Appl. Sci. Manuf., 40, 669 (2009).CrossRefGoogle Scholar
  9. (9).
    R. Sinha, S. O. Kazuaki, and O. Masami, Macromolecules, 36, 2355 (2003).CrossRefGoogle Scholar
  10. (10).
    N. Zhu, M. Ye, D. Shi, and M. Chen, Macromol. Res., 25, 165 (2017).CrossRefGoogle Scholar
  11. (11).
    R. Supthanyakul, N. Kaabbuathong, and S. Chirachanchai, Polymer, 105, 1 (2016).CrossRefGoogle Scholar
  12. (12).
    X. Zhang and Y. Zhang, Polymer, 140, 374 (2016).Google Scholar
  13. (13).
    J. B. Zeng, Y. D. Li, and W. D. Li, Ind. Eng. Chem. Res., 48, 1706 (2009).CrossRefGoogle Scholar
  14. (14).
    J.-M. Raquez, Y. Habibi, M. Murariu, and P. Dubois, Prog. Polym. Sci., 38, 1504 (2013).CrossRefGoogle Scholar
  15. (15).
    T. Gurunathan and S. K. Nayak, Polym. Adv. Technol., 27, 1484 (2016).CrossRefGoogle Scholar
  16. (16).
    M. Pluta, J. Bojda, E. Piorkowska, M. Murariu, L. Bonnaud, and P. Dubois, Polym. Test., 61, 35 (2017).CrossRefGoogle Scholar
  17. (17).
    Y. Zhou, L. Lei, B. Yang, J. Li, and J. Ren, Polym. Test., 60, 78 (2017).CrossRefGoogle Scholar
  18. (18).
    M. Ajioka, K. Enomoto, and K. Suzuki, J. Environ. Polym. Degrad., 3, 225 (1995).CrossRefGoogle Scholar
  19. (19).
    V. Sedlarik, P. Kucharczyk, V. Kasparkova, J. Drbohlav, A. Salakova, and P. Saha, J. Appl. Polym. Sci., 116, 1597 (2010).Google Scholar
  20. (20).
    Q. Gao, P. Lan, and H. Shao, Polym. J., 34, 786 (2002).CrossRefGoogle Scholar
  21. (21).
    A. Chuma, H. W. Horn, and W. C. Swope, J. Am. Chem. Soc., 130, 6749 (2008).CrossRefGoogle Scholar
  22. (22).
    M. Ryner, S. A. Kajsa, and C. A. Albertsson, Macromolecules, 34, 3877 (2010).CrossRefGoogle Scholar
  23. (23).
    M. S. And and A. Södergård, Macromolecules, 32, 6412 (2013).Google Scholar
  24. (24).
    Y. Zhao, X. Shuai, and C. A. Chuanfu, Chem. Mater., 15, 2836 (2003).CrossRefGoogle Scholar
  25. (25).
    J. L. Eguiburu, J. Sanroman, and B. Mjf, Polymer, 36, 173 (1995).CrossRefGoogle Scholar
  26. (26).
    A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, and P. Dubois, Eur. Polym. J., 43, 4103 (2007).CrossRefGoogle Scholar
  27. (27).
    M. Ju, F. Gong, S. Cheng, and Y. Gao, Int. J. Polym. Sci., 2011, 1 (2011).CrossRefGoogle Scholar
  28. (28).
    J. Dai, H. Bai, Z. Liu, L. Chen, Q. Zhang, and Q. Fu, RSC Adv., 6, 17008 (2016).CrossRefGoogle Scholar
  29. (29).
    X. Lu, L. Tang, L. Wang, J. Zhao, D. Li, Z. Wu, and P. Xiao, Polym. Test., 54, 90 (2016).CrossRefGoogle Scholar
  30. (30).
    R. Ouhib, B. Renault, H. Mouaziz, C. Nouvel, E. Dellacherie, and J.-L. Six, Carbohydr. Polym., 77, 32 (2009).CrossRefGoogle Scholar
  31. (31).
    K. W. Kim and S. I. Woo, Macromol. Chem. Phys., 203, 2245 (2002).CrossRefGoogle Scholar
  32. (32).
    S. I. Moon, C. W. Lee, and I. Taniguchi, Polymer, 42, 5059 (2001).CrossRefGoogle Scholar
  33. (33).
    C. M. Lee, H. S. Kim, and J. S. Yoon, J. Appl. Polym. Sci., 95, 1116 (2005).CrossRefGoogle Scholar
  34. (34).
    Y.-P. Song, D.-Y. Wang, X.-L. Wang, L. Lin, and Y.-Z. Wang, Polym. Adv. Technol., 22, 2295 (2011).CrossRefGoogle Scholar
  35. (35).
    C.-H. Ho, C.-H. Wang, C.-I. Lin, and Y.-D. Lee, Polymer, 49, 3902 (2008).CrossRefGoogle Scholar
  36. (36).
    Y.-M. Corre, A. Maazouz, J. Reignier, and J. Duchet, Polym. Eng. Sci., 54, 616 (2014).CrossRefGoogle Scholar
  37. (37).
    R. Zhang, K. Huang, S. Hu, Q. Liu, X. Zhao, and Y. Liu, Polym. Test., 63, 38 (2017).CrossRefGoogle Scholar
  38. (38).
    I. Moura, R. Nogueira, V. Bounor-Legare, and A. V. Machado, Mater. Chem. Phys., 134, 103 (2012).CrossRefGoogle Scholar
  39. (39).
    J. Tuominen and J. V. Seppala, Macromolecules, 33, 3530 (2000).CrossRefGoogle Scholar
  40. (40).
    S. Liu, C. Li, J. Zhao, Z. Zhang, and W. Yang, Polymer, 52, 6046 (2011).CrossRefGoogle Scholar
  41. (41).
    S. Ozlem, B. Iskin, G. Yilmaz, M. Kukut, J. Hacaloglu, and Y. Yagci, Eur. Polym. J., 48, 1755 (2012).CrossRefGoogle Scholar
  42. (42).
    N. J. Sijbrandi, A. J. Kimenai, E. P. C. Mes, R. Broos, G. Bar, M. Rosenthal, Y. Odarchenko, D. A. Ivanov, P. J. Dijkstra, and J. Feijen, Macromolecules, 45, 3948 (2012).CrossRefGoogle Scholar
  43. (43).
    Z. Ge, D. Wang, and Y. Zhou, Macromolecules, 42, 2903 (2009).CrossRefGoogle Scholar
  44. (44).
    T. Yokohara and M. Yamaguchi, Eur. Polym. J., 44, 677 (2008).CrossRefGoogle Scholar
  45. (45).
    L. Liu, J. Yu, L. Cheng, and X. Yang, Polym. Degrad. Stab., 94, 90 (2009).CrossRefGoogle Scholar
  46. (46).
    S.-L. Li, F. Wu, Y. Yang, Y.-Z. Wang, and J.-B. Zeng, Polym. Adv. Technol., 26, 1003 (2015).CrossRefGoogle Scholar
  47. (47).
    J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen, and Q. Gu, RSC Adv., 3, 18464 (2013).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Jun Zou
    • 1
    Email author
  • Yingzhen Qi
    • 1
  • Lele Su
    • 1
  • Yun Wei
    • 1
  • Zhaolei Li
    • 1
  • Haiqing Xu
    • 2
  1. 1.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangP. R. China
  2. 2.Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical IndustryHuaiyin Institute of TechnologyHuaianP. R. China

Personalised recommendations