Macromolecular Research

, Volume 27, Issue 1, pp 33–47 | Cite as

Controlled Dehydrochlorination of Poly(vinyl chloride) for Fabrication of Membranes with Polyacetylene-Like Structure: XPS Analysis and Ion Exchange Membrane Discussion

  • Eun Ji Park
  • Seung Yong Lee
  • Ali CanlierEmail author
  • Taek Sung HwangEmail author


Poly(vinyl chloride) (PVC) can be dehydrochlorinated by strong bases, e.g. tert-butoxide and hydroxide, to attain polyacetylene-like highly conjugated polymer chains. Dehydrochlorinated PVC (DHPVC) can be further functionalized by additional reactions to obtain ion exchange membranes, battery membranes, semiconductors, etc. However DHPVC resin is not available for membrane casting because of its low solubility. Therefore dehydrochlorination was performed directly on PVC membranes in this research. The extent of dehydrochlorination and the length of conjugation were controlled by adjusting conditions such as base/PVC ratio and solvent type. X-ray photoelectron spectrometry and elemental analysis were used to detect Cl, C, O, and H contents of the products. A calculation method that uses parameters of atomic approximations, was proposed to mathematically express trends of “degrees of dechlorination, dehydrochlorination, unsaturation, and substitution” with respect to the amount of base used. Up to 64.5% unsaturation and 96.6% dechlorination of PVC membranes were achieved. In addition, theoretical ion exchange capacity (IECtheo) was defined with a suggestion that charged functional groups can be attached to the polymer backbone by double bonds, allowing ion exchange membranes to be manufactured. By tailoring the degree of unsaturation in dehydrochlorinated species, theoretically up to 18 meq/g of IEC would be reached if all double bonds would be functionalized. Scanning electron microscopy analysis showed that tert-butoxide products had a porous structure. FTIR and UV-Visible spectroscopy results verified the formation of long polyene sequences. Dehydrochlorination may be a legitimate method for recycling PVC waste into functional membrane materials.


poly(vinyl chloride) dehydrochlorination DHPVC conjugation XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Saeki and T. Emura, Prog. Polym. Sci., 27, 2055 (2002).CrossRefGoogle Scholar
  2. (2).
    Plastic world market,, accessed on Nov 13, 2017.
  3. (3).
    R. C. Thompson, C. J. Moore, F. S. Saal, and S. H. Swan, Phil. Trans. R. Soc. B, 364, 2153 (2009).CrossRefGoogle Scholar
  4. (4).
    J. Thornton, Environmental Impacts of Polyvinyl Chloride (PVC) Building Materials. A briefing paper for the Healthy Building Network,
  5. (5).
    A. Buekens and J. Yang, J. Mater. Cycles Waste Manag., 16, 415 (2014).CrossRefGoogle Scholar
  6. (6).
    R. F. Dyer and V. H. Esch, JAMA, 235, 393 (1976).CrossRefGoogle Scholar
  7. (7).
    G. E. Hartzell, A. F. Grand, and W. G. Switzer, ACS Symp. Ser. Am. Chem. Soc., 425, 12 (1990).Google Scholar
  8. (8).
    K. Wang, K. Chiang, S. Lin, C. Tsai, and C. Sun, Chemosphere, 38, 1571 (1999).CrossRefGoogle Scholar
  9. (9).
    J. D. Kilgroe, J. Hazard. Mater., 47, 163 (1996).CrossRefGoogle Scholar
  10. (10).
    M. Zhang, A. Buekens, X. Jiang, and X. Li, Waste Manag. Res., 33, 630 (2015).CrossRefGoogle Scholar
  11. (11).
    S. Moulay, Prog. Polym. Sci., 35, 303 (2010).CrossRefGoogle Scholar
  12. (12).
    D. Glas, J. Hulsbosch, P. Dubois, K. Binnemans, and D. E. De Vos, Chem-SusChem, 7, 610 (2014).Google Scholar
  13. (13).
    J. Datta and P. Kopczynska, Crit. Rev. Env. Sci. Technol., 46, 905 (2016).CrossRefGoogle Scholar
  14. (14).
    N. S. Shaglaeva, R. T. Sultangareev, E. A. Zabanova, O. V. Lebedeva, and K. S. Trofimova, Russ. J. Appl. Chem., 81, 131 (2008).CrossRefGoogle Scholar
  15. (15).
    S. Marian and G. Levin, J. Appl. Polym. Sci., 26, 3295 (1981).CrossRefGoogle Scholar
  16. (16).
    G. Martínez, E. de Santos, and J. L. Millan, Macromol. Chem. Phys., 202, 2377 (2001).CrossRefGoogle Scholar
  17. (17).
    T. Kameda, Y. Fukuda, G. Grause, and T. Yoshioka, J. Appl. Polym. Sci., 116, 36 (2010).CrossRefGoogle Scholar
  18. (18).
    E. J. Park, B. C. Park, Y. J. Kim, A. Canlier, and T. S. Hwang, Macromol. Res., (2018).
  19. (19).
    S. E. Evsyukov, Y. P. Kudryavtsev, and Y. V. Korshak, Russ. Chem. Rev., 60, 764 (1991).CrossRefGoogle Scholar
  20. (20).
    N. Seeponkai and J. Wootthikanokkhan, J. Appl. Polym. Sci., 130, 2410 (2013).CrossRefGoogle Scholar
  21. (21).
    H. Kise, J. Polym. Sci., Part A: Polym. Chem., 20, 3189 (1982).Google Scholar
  22. (22).
    T. Yoshioka, T. Kameda, S. Imai, and A. Okuwaki, Polym. Degrad. Stab., 93, 1138 (2008).CrossRefGoogle Scholar
  23. (23).
    S. Shin, T. Yoshioka, and A. Okuwaki, Polym. Degrad. Stab., 61, 349 (1998).CrossRefGoogle Scholar
  24. (24).
    S. Shin, T. Yoshioka, and A. Okuwaki, J. Appl. Polym. Sci., 67, 2171 (1998).CrossRefGoogle Scholar
  25. (25).
    T. Yoshioka, K. Furukawa, T. Sato, and A. Okuwaki, J. Appl. Polym. Sci., 70, 129 (1998).CrossRefGoogle Scholar
  26. (26).
    Y. Shindo and T. Hirai, Macromol. Chem. Phys., 155, 1 (1972).CrossRefGoogle Scholar
  27. (27).
    L. Guo, G. Shi, and Y. Liang, Polymer, 42, 5581 (2001).CrossRefGoogle Scholar
  28. (28).
    F. Osada and T. Yoshioka, J. Mater. Cycles Waste Manag., 11, 19 (2009).CrossRefGoogle Scholar
  29. (29).
    A. Holländer, H. Zimmermann, and J. Behnisch, Eur. Polym. J., 27, 959 (1991).CrossRefGoogle Scholar
  30. (30).
    A. Ávila, E. I. Sánchez, and M. I. Gutiérrez, Chemometr. Intell. Lab. Syst., 77, 247 (2005).CrossRefGoogle Scholar
  31. (31).
    C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).CrossRefGoogle Scholar
  32. (32).
    N. Basescu, Z.-X. Liu, D. Moses, A. J. Heeger, H. Naarmann, and N. Theophilou, Nature, 327, 403 (1987).CrossRefGoogle Scholar
  33. (33).
    S. Roth and M. Filzmoser, Adv. Mater., 2, 356 (1990).CrossRefGoogle Scholar
  34. (34).
    M. N. Norizan and R. Mohamed, J. Teknol., 79, 117 (2017).Google Scholar
  35. (35).
    M. Ghaemy and I. Gharaebi, Eur. Polym. J., 36, 1967 (2000).CrossRefGoogle Scholar
  36. (36).
    J. T. S. Allan, L. E. Prest, and E. B. Easton, J. Membr. Sci., 489, 175 (2015).CrossRefGoogle Scholar
  37. (37).
    H. M. de A. M. M. S. Machado, G. R. Filho, R. M. N. De Assunção, H. M. Soares, A. P. Cangani, D. A. Cerqueira, and C. D. S. Meireles, J. Appl. Polym. Sci., 115, 1474 (2010).CrossRefGoogle Scholar
  38. (38).
    G. M. Benedikt, B. L. Goodall, L. F. Rhodes, and A. C. Kemball, Macromol. Symp., 86, 65 (1994).CrossRefGoogle Scholar
  39. (39).
    H. Schulz, Biochim. Biophys. Acta (BBA)-Lipids Lipid Metabolism, 1081, 109 (1991).CrossRefGoogle Scholar
  40. (40).
    F. Sondheimer, D. A. Ben-Efrain, and R. Wolovsky, J. Am. Chem. Soc., 83, 1675 (1961).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Applied Chemistry, College of EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations