Macromolecular Research

, Volume 26, Issue 12, pp 1123–1128 | Cite as

Inkjet Printing of SiO2 Hollow Spheres/Polyimide Hybrid Films for Foldable Low-k ILD

  • Min Kyu Kim
  • Sung Hwan Hwang
  • Hyun Sung Jung
  • Tae Sik Oh
  • Jong Hee Kim
  • Ji Beom YooEmail author


We demonstrate inkjet printing as a viable method for flexible interlayer dielectrics (ILDs) films with a low dielectric constant, excellent mechanical characteristics, and thermal properties in foldable organic light emitting diodes (OLEDs). SiO2 hollow spheres (SHSs)/polyimide (PI) hybrid films were printed by SiO2 coated polystyrene (PS) ink and PI ink. The relative permittivity of the hybrid films decreased from 3.45 to 1.87. The thermally stable PI fims maintained their weight below 500 °C from the TGA result. The dielectric constant and current density retained their properties after 50,000 cycles of bending at a 1 mm bend radius. We propose that the inkjet printing of SHSs/PI hybrid films described herein is a promising approach for flexible ILDs in foldable OLEDs.


inkjet printing foldable OLEDs interlayer dielectric low-k material polyimide SiO2 hollow sphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2019_7001_MOESM1_ESM.pdf (1.2 mb)
Supporting Information


  1. (1).
    A. Dodabalapur, Z. Bao, A. Makhija, J. G. Laquindanum, V. R. Raju, Y. Feng, H. E. Katz, and J. Rogers, Appl. Phys. Lett., 73, 142 (1998).CrossRefGoogle Scholar
  2. (2).
    H. Sirringhaus, N. Tessler, and R. H. Friend, Science, 280, 1741 (1998).CrossRefGoogle Scholar
  3. (3).
    R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. Y. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, C. W. Tang, S. V. Slyke, F. Chen, J. Shi, J. C. Sturm, and M. H. Lu, SID Int. Symp. Digest Tech. Papers, 29, 11 (1998).CrossRefGoogle Scholar
  4. (4).
    J. J. Lih and C. F. Sung, J. Soc. Inf. Disp., 11, 617 (2003).CrossRefGoogle Scholar
  5. (5).
    T. Chuman, S. Ohta, S. Miyaguchi, H. Satoh, T. Tanabe, Y. Okuda, and M. Tsuchida, SID Int. Symp. Digest Tech. Papers, 35, 45 (2004).CrossRefGoogle Scholar
  6. (6).
    R. D. Miller, Science, 286, 421 (1999).CrossRefGoogle Scholar
  7. (7).
    M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. H. Cho, and P. S. Ho, Annu. Rev. Mater. Sci., 30, 645 (2000).CrossRefGoogle Scholar
  8. (8).
    K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma, and Z. S. Yanovitskaya, J. Appl. Phys., 93, 8793 (2003).CrossRefGoogle Scholar
  9. (9).
    International Technology Roadmap for Semiconductors, Semiconductor industry Association, 2011 Edition, 2011.Google Scholar
  10. (10).
    M. A. Wolfgang, Curr. Opin. Solid State Mater. Sci., 6, 371 (2002).CrossRefGoogle Scholar
  11. (11).
    M. K. Kim, D. W. Kim, D. W. Shin, S. J. Seo, H. K. Chung, and J. B. Yoo, Phys. Chem. Chem. Phys., 17, 2416 (2015).CrossRefGoogle Scholar
  12. (12).
    N. Kivilcim, T. Seckin, and S. Koytepe, J. Porous Mater., 20, 709 (2013).CrossRefGoogle Scholar
  13. (13).
    Y.-H. Kim, H.-S. Kim, and S.-K. Kwon, Macromolecules, 38, 7950 (2005).CrossRefGoogle Scholar
  14. (14).
    D.-J. Liaw, F.-C. Chang, M. Leung, M.-Y. Chou, and K. Muellen, Macromolecules, 38, 4024 (2005).CrossRefGoogle Scholar
  15. (15).
    N.-H. You, Y. Suzuki, D. Yorifuji, S. Ando, and M. Ueda, Macromolecules, 41, 6361 (2008).CrossRefGoogle Scholar
  16. (16).
    S. Köytepe, S. Erdoðan, and T. Seçkin, J. Hazard. Mater., 162, 695 (2009).CrossRefGoogle Scholar
  17. (17).
    B. Alici, S. Koytepe, and T. Seckin, Turk. J. Chem., 31, 569 (2007).Google Scholar
  18. (18).
    D.-J. Liaw, B.-Y. Liaw, P.-N. Hsu, and C.-Y. Hwang, Chem. Mater., 13, 1811 (2001).CrossRefGoogle Scholar
  19. (19).
    M. K. Ghosh and K. L. Mittal, in Polyimides: Fundamentals and Applications, Marcel Dekker, New York, 1996, Chap. 2.Google Scholar
  20. (20).
    R. R. Tummala and E. J. Rymaszewski, in Microelectronics Packaging Handbook, Van Nostrand Reinhold, New York, 1989, Chap. 1.Google Scholar
  21. (21).
    H. Treichel, G. Ruhl, P. Anamann, and M. Dietlmeier, Microelectr. Eng., 40, 1 (1998).CrossRefGoogle Scholar
  22. (22).
    S. J. Lee, M. C. Choi, S. S. Park, and C. S. Ha, Macromol. Res., 19, 599 (2011).CrossRefGoogle Scholar
  23. (23).
    J. Wen and G. L. Wikes, Chem. Mater., 8, 1667 (1996).CrossRefGoogle Scholar
  24. (24).
    G. Dingemans, C. A. A. van Helvoirt, M. M. Mandoc, M. C. C. van de Sanden, and W. M. M. Kessels, Electrochem. Soc. 1, H1 (2011).Google Scholar
  25. (25).
    W. J. Lee, M. H. Chun, K. S. Cheong, and S. K. Rha, Solid State Phenom., 124, 247 (2007).CrossRefGoogle Scholar
  26. (26).
    M. J. Tommalieh, A. M. Zihlif, and G. Ragosta, J. Exp. Nanosci., 6, 652 (2011).CrossRefGoogle Scholar
  27. (27).
    M. K. Kim, D. W. Kim, S. H. Moon, D. W. Shin, T. S. Oh, and J. B. Yoo, Mater. Sci. Eng. B, 217, 7 (2017).CrossRefGoogle Scholar
  28. (28).
    E. Tekin, P. J. Smith, and U. S. Schubert, Soft Matter, 4, 703 (2008).CrossRefGoogle Scholar
  29. (29).
    A. Teichler, J. Perelaer, and U. S. Schubert, J. Mater. Chem. C, 1, 1910 (2013).CrossRefGoogle Scholar
  30. (30).
    Y. J. Oh, J. H. Kim, Y. J. Yoon, H. T. Kim, H. G. Yoon, S. N. Lee, and J. H. Kim, Curr. Appl. Phys., 11, S359 (2011).Google Scholar
  31. (31).
    M. Barret, S. Sanaur, and P. Collot, Org. Electron., 9, 1093 (2008).CrossRefGoogle Scholar
  32. (32).
    K. J. Baeg, D. Khim, J. H. Kim, M. Kang, I. K. You, D. Y. Kim, and Y. Y. Noh, Org. Electron., 12, 634 (2011).CrossRefGoogle Scholar
  33. (33).
    Y. Yoshioka, P. D. Calvert, and G. E. Jabbour, Macromol. Rapid Commun., 26, 238 (2005).CrossRefGoogle Scholar
  34. (34).
    E. Tekin, E. Holder, D. Kozodaev, and U. S. Schubert, Adv. Funct. Mater., 17, 277 (2007).CrossRefGoogle Scholar
  35. (35).
    A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, M. Morana, C. J. Brabec, and U. S. Schubert, Adv. Energy Mater., 1, 105 (2011).CrossRefGoogle Scholar
  36. (36).
    M. Neophytou, W. Cambarau, F. Hermerschmidt, C. Waldauf, C. Christodoulou, R. Pacios, and S. A. Choulis, Microelectron. Eng., 95, 102 (2012).CrossRefGoogle Scholar
  37. (37).
    J. W. Ottewill and R. H. Pelton, R. Colloid Polym. Sci., 257, 61 (1979).CrossRefGoogle Scholar
  38. (38).
    Y. Lu, J. McLellan, and Y. Xia, Langmuir, 20, 3464 (2004).CrossRefGoogle Scholar
  39. (39).
    T. K. Pradhan and P. K. Panigrahi, Colloids Surf. A, 482, 562 (2015).CrossRefGoogle Scholar
  40. (40).
    K. Futera, M. Jakubowska, and G. Koziol, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2010, SPIE-IEEE-PSP WILGA Symposium, International Society for Optics and Photonics, Wilga, Poland, 2010, 77451A.Google Scholar
  41. (41).
    M. S. Hwang, J. H. Kim, H. T. Kim, Y. J. Yoon, S. G. Hyun, J. H. Kim, S. N. Lee, and J. H. Moon, J. Appl. Phys., 108, 102809 (2010).CrossRefGoogle Scholar
  42. (42).
    A. V. Yakovlev, V. A. Milichko, E. A. Pidko, V. V. Vinogradov, and A. V. Vinogradov, Sci. Rep., 6, 37090 (2016).CrossRefGoogle Scholar
  43. (43).
    B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. D. Perovic, and G. A. Ozin, Mater. Today, 9 (2006).Google Scholar
  44. (44).
    H. Treichel, G. Ruhl, P. Ansmann, R. Wurl, Ch. Muller, and M. Dietlmeier, Microelectron. Eng., 40, 1 (1998).CrossRefGoogle Scholar
  45. (45).
    Y. J. Yoon and B. Kim, in IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging, The Institute of Electrical and Electronics Engineers, Scottsdale, 2000, p 163.Google Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Min Kyu Kim
    • 1
  • Sung Hwan Hwang
    • 2
  • Hyun Sung Jung
    • 3
  • Tae Sik Oh
    • 4
  • Jong Hee Kim
    • 5
  • Ji Beom Yoo
    • 1
    • 5
    Email author
  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT) and center for Human Interface Nano Technology (HINT)Sungkyunkwan UniversitySuwonKorea
  2. 2.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  3. 3.Nano Convergence Materials CenterKorea Institute of Ceramic Engineering and Technology (KICET)JinjuKorea
  4. 4.School of Mechanical and ICT Convergence EngineeringSunmoon UniversityAsanKorea
  5. 5.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations