Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1074–1084 | Cite as

Molecular Engineering of Metal-Organic Cycles/Cages for Drug Delivery

  • Nicola Judge
  • Lang Wang
  • Yannis Yan Lum Ho
  • Yufeng WangEmail author
Review
  • 148 Downloads

Abstract

The assembly of nanoscale materials with well-defined size and shape is an intriguing approach to aid in drug design and delivery. Of the various nano-structures that have been synthesised, metal-organic cycles and cages (MOCs), featuring great structural versatility, have emerged as promising components in cancer chemotherapeutics. We review the recent progress of exploiting self-assembled MOCs as anticancer drugs as well as drug carriers. Particularly molecular engineering designs allow MOCs to carry drugs with specificity, and interface with biological systems whilst possessing the desired stability, cytotoxicity, and compatibility. A special focus is given to the functionalization method of integrating MOCs with polymers, leading to the synthesis of colloidal nanoparticles-micelles and vesicles-that possess combined properties and extended system tunability.

Keywords

metal-organic cycles/cages (MOC) self-assembly nanoparticles drug delivery cancer therapeutics 

References

  1. (1).
    T. Cook and P. Stang, Chem. Rev., 115, 7001 (2015).CrossRefGoogle Scholar
  2. (2).
    R. Chakrabarty, P. S. Mukherjee, and P. Stang, Chem. Rev., 111, 6810 (2011).CrossRefGoogle Scholar
  3. (3).
    B. Breiner, J. K. Clegg, and J. R. Nitschke, Chem. Sci., 2, 51 (2010).CrossRefGoogle Scholar
  4. (4).
    M. D. Pluth, R. G. Bergman, and K. N. Raymond, Acc. Chem. Res., 42, 1650 (2009).CrossRefGoogle Scholar
  5. (5).
    M. Yoshizawa, J. K. Klosterman, and M. Fujita, Angew. Chem. Int. Ed., 48, 3418 (2009).CrossRefGoogle Scholar
  6. (6).
    I. Yasuhide, A. Tatsuhiko, and F. Makoto, Nat. Chem., 2, 780 (2010).CrossRefGoogle Scholar
  7. (7).
    M. Zhang, M. L. Saha, M. Wang, Z. Zhou, B. Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, and P. J. Stang, J. Am. Chem. Soc., 139, 5067 (2017).CrossRefGoogle Scholar
  8. (8).
    I. Yasuhide, K. Masaki, and F. Makoto, Nat. Chem., 3, 349 (2011).CrossRefGoogle Scholar
  9. (9).
    P. Stang and B. Olenyuk, Acc. Chem. Res., 30, 502 (1997).CrossRefGoogle Scholar
  10. (10).
    M. Tominaga, K. Suzuki, M. Kawano, T. Kusukawa, T. Ozeki, S. Sakamoto, K. Yamaguchi, and M. Fujita, Angew. Chem. Int. Ed., 43, 5621 (2004).CrossRefGoogle Scholar
  11. (11).
    P. Liao, B. W. Langloss, A. M. Johnson, E. R. Knudsen, F. S. Tham, R. R. Julian, and R. J. Hooley, Chem. Commun., 46, 4932 (2010).CrossRefGoogle Scholar
  12. (12).
    D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, Chem, 1, 91 (2016).CrossRefGoogle Scholar
  13. (13).
    F. Daishi, U. Yoshihiro, S. Sota, M. Nobuhiro, K. Takashi, and F. Makoto, Nature, 540, 563 (2016).CrossRefGoogle Scholar
  14. (14).
    J. E. M. Lewis, E. L. Gavey, S. A. Cameron, and J. D. Crowley, Chem. Sci., 3, 778 (2012).CrossRefGoogle Scholar
  15. (15).
    A. Schmidt, V. Molano, M. Hollering, A. Pöthig, A. Casini, and F. E. Kühn, Chem. Eur. J., 22, 2253 (2016).CrossRefGoogle Scholar
  16. (16).
    A. P. Robby and M. D. Joseph, Nat. Rev. Drug Discov., 9, 615 (2010).CrossRefGoogle Scholar
  17. (17).
    C. Hongmin, Z. Weizhong, Z. Guizhi, X. Jin, and C. Xiaoyuan, Nat. Rev. Mater., 2, 17024 (2017).CrossRefGoogle Scholar
  18. (18).
    I. Eryazici, C. Moorefield, and G. Newkome, Chem. Rev., 108, 1834 (2008).CrossRefGoogle Scholar
  19. (19).
    S. M. McNeill, D. Preston, J. E. M. Lewis, A. Robert, K. Knerr-Rupp, D. O. Graham, J. R. Wright, G. I. Giles, and J. D. Crowley, Dalton Trans., 44, 11129 (2015).CrossRefGoogle Scholar
  20. (20).
    D. Preston, S. M. McNeill, J. E. M. Lewis, G. I. Giles, and J. D. Crowley, Dalton Trans., 45, 8050 (2016).CrossRefGoogle Scholar
  21. (21).
    L. E. H. Paul, B. Therrien, and J. Furrer, Inorg. Chem., 51, 1057 (2012).CrossRefGoogle Scholar
  22. (22).
    V. Vajpayee, Y. H. Song, Y. J. Yang, S. C. Kang, T. R. Cook, D. W. Kim, M. S. Lah, I. S. Kim, M. Wang, P. J. Stang, and K.-W. Chi, Organometallics, 30, 6482 (2011).CrossRefGoogle Scholar
  23. (23).
    S. Kai, T. Shigeta, T. Kojima, and S. Hiraoka, Chem. Asian J., 12, 3203 (2017).CrossRefGoogle Scholar
  24. (24).
    S. Kai, V. Martí-Centelles, Y. Sakuma, T. Mashiko, T. Kojima, U. Nagashima, M. Tachikawa, P. J. Lusby, and S. Hiraoka, Chem. Eur. J., 24, 663 (2018).CrossRefGoogle Scholar
  25. (25).
    G. Gupta, A. Das, K. C. Park, A. Tron, H. Kim, J. Mun, N. Mandal, K.-W. Chi, and C. Y. Lee, Inorg. Chem., 56, 4616 (2017).Google Scholar
  26. (26).
    G. Yu, T. R. Cook, Y. Li, X. Yan, D. Wu, L. Shao, J. Shen, G. Tang, F. Huang, X. Chen, and P. J. Stang, Proc. Natl. Acad. Sci. U.S.A., 113, 13720 (2016).CrossRefGoogle Scholar
  27. (27).
    M. Mounir, J. Lorenzo, F. Ferrer, M. J. Prieto, O. Rossell, F. X. Avilès, and V. Moreno, J. Inorg. Biochem., 101, 660 (2007).CrossRefGoogle Scholar
  28. (28).
    M. Franceschin, Eur. J. Org. Chem., 14, 2225 (2009).CrossRefGoogle Scholar
  29. (29).
    R. Kieltyka, P. Englebienne, J. Fakhoury, C. Autexier, N. Moitessier, and H. F. Sleiman, J. Am. Chem. Soc., 130, 10040 (2008).CrossRefGoogle Scholar
  30. (30).
    N. P. E. Barry, K. H. Abd Karim, R. Vilar, and B. Therrien, Dalton Trans., 10717 (2009).Google Scholar
  31. (31).
    J. Mattson, P. Govindaswamy, A. Renfrew, P. Dyson, P. Stepnicka, G. Suss-Fink, and B. Therrien, Organometallics, 28, 4350 (2009).CrossRefGoogle Scholar
  32. (32).
    N. Barry, F. Edafe, and B. Therrien, Dalton Trans., 40, 7172 (2011).CrossRefGoogle Scholar
  33. (33).
    B. Therrien, G. Süss-Fink, P. Govindaswamy, A. K. Renfrew, and P. J. Dyson, Angew. Chem. Int. Ed., 47, 3773 (2008).CrossRefGoogle Scholar
  34. (34).
    N. P. E. Barry, F. Edafe, P. J. Dyson, and B. Therrien, Dalton Trans., 39, 2816 (2010).CrossRefGoogle Scholar
  35. (35).
    F. Linares, M. A. Galindo, S. Galli, M. A. Romero, J. A. R. Navarro, and E. Barea, Inorg. Chem., 48, 7413 (2009).CrossRefGoogle Scholar
  36. (36).
    V. Vajpayee, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, P.J. Stang, and K.-W. Chi, Chem. Commun., 47, 5184 (2011).CrossRefGoogle Scholar
  37. (37).
    A. Mishra, H. Jung, J. W. Park, H. K. Kim, H. Kim, P. J. Stang, and K.-W. Chi, Organometallics, 31, 3519 (2012).CrossRefGoogle Scholar
  38. (38).
    V. Vajpayee, S. Lee, S.-H. Kim, S. C. Kang, T. R. Cook, H. Kim, D. W. Kim, S. Verma, M. S. Lah, I. S. Kim, M. Wang, P. J. Stang, and K.-W. Chi, Dalton Trans., 42, 466 (2012).CrossRefGoogle Scholar
  39. (39).
    V. Vajpayee, Y. H. Song, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, P. J. Stang, and K.-W. Chi, Organometallics, 30, 3242 (2011).CrossRefGoogle Scholar
  40. (40).
    V. Vajpayee, Y. H. Song, Y. J. Yang, S. C. Kang, H. Kim, I. S. Kim, M. Wang, T. R. Cook, P. J. Stang, and K.-W. Chi, Dalton Trans., 41, 3046 (2012).CrossRefGoogle Scholar
  41. (41).
    T. Cook, V. Vajpayee, M. Lee, P. Stang, and K. Chi, Acc. Chem. Res., 46, 2464 (2013).CrossRefGoogle Scholar
  42. (42).
    N. Ahmad, H. A. Younus, A. H. Chughtai, and F. Verpoort, Chem. Soc. Rev., 44, 9 (2014).CrossRefGoogle Scholar
  43. (43).
    H. Vardhan, M. Yusubov, and F. Verpoort, Coord. Chem. Rev., 306, 171 (2016).CrossRefGoogle Scholar
  44. (44).
    A. Ahmedova, D. Momekova, M. Yamashina, P. Shestakova, G. Momekov, M. Akita, and M. Yoshizawa, Chem. Asian J., 11, 474 (2016).CrossRefGoogle Scholar
  45. (45).
    N. P. E. Barry, O. Zava, P. J. Dyson, and B. Therrien, J. Org. Chem., 705, 1 (2012).CrossRefGoogle Scholar
  46. (46).
    V. G. Ivan, J. B. Pollock, K. Swati, R. C. Timothy, J. S. Peter, and Z. O. Bogdan, Proc. Natl. Acad. Sci., 111, 18448 (2014).CrossRefGoogle Scholar
  47. (47).
    J. Zhou, Y. Zhang, G. Yu, M. Crawley, C. Fulong, A. E. Friedman, S. Sengupta, J. Sun, Q. Li, F. Huang, and T. Cook, J. Am. Chem. Soc., 140, 7730 (2018).CrossRefGoogle Scholar
  48. (48).
    A. McConnell, C. S. Wood, P. P. Neelakandan, and J. R. Nitschke, Chem. Rev., 115, 7729 (2015).CrossRefGoogle Scholar
  49. (49).
    K. Suzuki, J. Iida, S. Sato, M. Kawano, and M. Fujita, Angew. Chem. Int. Ed., 47, 5780 (2008).CrossRefGoogle Scholar
  50. (50).
    M. Tominaga, K. Suzuki, T. Murase, and M. Fujita, J. Am. Chem. Soc., 127, 11950 (2005).CrossRefGoogle Scholar
  51. (51).
    T. Kikuchi, S. Sato, and M. Fujita, J. Am. Chem. Soc., 132, 15930 (2010).CrossRefGoogle Scholar
  52. (52).
    J. E. M. Lewis, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, and J. D. Crowley, Chem. Sci., 5, 1833 (2014).CrossRefGoogle Scholar
  53. (53).
    H.-N. Wang, X. Meng, G.-S. Yang, X.-L. Wang, K.-Z. Shao, Z.-M. Su, and C.-G. Wang, Chem. Commun., 47, 7128 (2011).CrossRefGoogle Scholar
  54. (54).
    J. W. Yi, N. P. E. Barry, M. A. Furrer, O. Zava, P. J. Dyson, B. Therrien, and B. H. Kim, Bioconjug. Chem., 23, 461 (2012).CrossRefGoogle Scholar
  55. (55).
    D. Preston, J. E. M. Lewis, and J. D. Crowley, J. Am. Chem. Soc., 139, 2379 (2017).CrossRefGoogle Scholar
  56. (56).
    W. Cullen, S. Turega, C. A. Hunter, and M. D. Ward, Chem. Sci., 6, 625 (2014).CrossRefGoogle Scholar
  57. (57).
    Y.-R. Zheng, K. Suntharalingam, T. C. Johnstone, and S. J. Lippard, Chem. Sci., 6, 1189 (2015).CrossRefGoogle Scholar
  58. (58).
    B. J. Holliday and C. A. Mirkin, Angew. Chem. Int. Ed. Engl., 40, 2022 (2001).CrossRefGoogle Scholar
  59. (59).
    A. Schmidt, M. Hollering, M. Drees, A. Casini, and F. E. Khn, Dalton Trans., 45, 8556 (2016).CrossRefGoogle Scholar
  60. (60).
    F. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau, and O. A. Scherman, Angew. Chem. Int. Ed., 51, 7739 (2012).CrossRefGoogle Scholar
  61. (61).
    J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, Chem. Commun., 18, 1740 (2001).CrossRefGoogle Scholar
  62. (62).
    Y. Hong, J. W. Y. Lam, and B. Z. Tang, Chem. Commun., 4332 (2009).Google Scholar
  63. (63).
    Y. Hong, J. W. Y. Lam, and B. Z. Tang, Chem. Soc. Rev., 40, 5361 (2011).CrossRefGoogle Scholar
  64. (64).
    J. Liang, B. Z. Tang, and B. Liu, Chem. Soc. Rev., 44, 2798 (2015).CrossRefGoogle Scholar
  65. (65).
    Z. Zhao, J. W. Y. Lam, and B. Z. Tang, J. Mater. Chem., 22, 23726 (2012).CrossRefGoogle Scholar
  66. (66).
    X. Yan, T. R. Cook, P. Wang, F. Huang, and P. J. Stang, Nat. Chem., 7, 342 (2015).CrossRefGoogle Scholar
  67. (67).
    T. Zhang, G.-L. Zhang, Q.-Q. Yan, L.-P. Zhou, L.-X. Cai, X.-Q. Guo, and Q.- F. Sun, Inorg. Chem., 57, 3596 (2017).CrossRefGoogle Scholar
  68. (68).
    Q.-Q. Yan, S.-J. Hu, G.-L. Zhang, T. Zhang, L.-P. Zhou, and Q.-F. Sun, Molecules, 23, 363 (2018).CrossRefGoogle Scholar
  69. (69).
    M. Zhang, S. Li, X. Yan, Z. Zhou, M. L. Saha, Y.-C. Wang, and P. J. Stang, Proc. Natl. Acad. Sci. U.S.A., 113, 11100 (2016).CrossRefGoogle Scholar
  70. (70).
    G.-J. Zhao, B. H. Northrop, P. J. Stang, and K.-L. Han, J. Phys. Chem. A, 114, 3418 (2010).CrossRefGoogle Scholar
  71. (71).
    J. B. Pollock, T. R. Cook, and P. J. Stang, J. Am. Chem. Soc., 134, 10607 (2012).CrossRefGoogle Scholar
  72. (72).
    J. B. Pollock, G. L. Schneider, T. R. Cook, A. S. Davies, and P. J. Stang, J. Am. Chem. Soc., 135, 13676 (2013).CrossRefGoogle Scholar
  73. (73).
    W. J. Webber, E. A. Appel, B. Vinciguerra, A. B. Cortinas, L. S. Thapa, S. Jhunjhunwala, L. Isaacs, R. Langer, and D. G. Anderson, Proc. Natl. Acad. Sci. U.S.A., 113, 14189 (2016).CrossRefGoogle Scholar
  74. (74).
    G. Yu, M. Zhang, M. L. Saha, Z. Mao, J. Chen, Y. Yao, Z. Zhou, Y. Liu, C. Gao, F. Huang, X. Chen, and P. J. Stang, J. Am. Chem. Soc., 139, 15940 (2017).CrossRefGoogle Scholar
  75. (75).
    S. Datta, S. K. Misra, M. L. Saha, N. Lahiri, J. Louie, D. Pan, and P. J. Stang, Proc. Natl. Acad. Sci. U.S.A., 115, 8087 (2018).CrossRefGoogle Scholar
  76. (76).
    D. Zhao, S. Tan, D. Yuan, W. Lu, Y. H. Rezenom, H. Jiang, L.-Q. Wang, and H.-C. Zhou, Adv. Mater., 23, 90 (2011).CrossRefGoogle Scholar
  77. (77).
    J. A. Foster, R. M. Parker, A. M. Belenguer, N. Kishi, S. Sutton, C. Abell, and J. R. Nitschke, J. Am. Chem. Soc., 137, 9722 (2015).CrossRefGoogle Scholar
  78. (78).
    F. Ibukuro, T. Kusukawa, and M. Fujita, J. Am. Chem. Soc., 120, 8561 (1998).CrossRefGoogle Scholar
  79. (79).
    Z. Yue, H. Wang, D. J. Bowers, M. Gao, M. Stilgenbauer, F. Nielsen, J. T. Shelley, and Y.-R. Zheng, Dalton Trans., 47, 670 (2018).CrossRefGoogle Scholar
  80. (80).
    S. Samanta, D. Moncelet, V. Briken, and L. Isaacs, J. Am. Chem. Soc., 138, 14488 (2016).CrossRefGoogle Scholar
  81. (81).
    S. K. Samanta, J. Quigley, B. Vinciguerra, V. Briken, and L. Isaacs, J. Am. Chem. Soc., 139, 9066 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Nicola Judge
    • 1
  • Lang Wang
    • 1
  • Yannis Yan Lum Ho
    • 1
  • Yufeng Wang
    • 1
    Email author
  1. 1.Department of ChemistryThe University of Hong KongHong Kong SARChina

Personalised recommendations