Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1108–1114 | Cite as

Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method

  • Hyeongho Min
  • Youngjin Choi
  • Jaeyun Kim
  • Jungwook KimEmail author
  • Changhyun PangEmail author
Article
  • 161 Downloads

Abstract

Various shapes of magnetically-programmed polyethylene glycol (PEG)-based particles with Fe3O4 blocks were harvested by a facile reaping method. Specifically, elastic PEG-based particles can be obtained by applying uniform shear stress onto the array of densely-populated PEG/Fe3O4 microstructures. A simple theory based on geometric and material properties was developed based on experimental observations to produce highly uniform cylindrical microparticles in a cost-effective manner. We analyzed the force balance of hairy architectures to explain the uniform cutting process, which is based on operating zones with various geometries and material elasticity. Here, the alignments of mono-/multi-dispersed iron oxide (Fe3O4) in microparticles can be tunable by changing the external magnetic field during replications. Furthermore, the collective reversible motions of different magneto-responsive PEG particles were observed when the external magnetic field was controlled, wherein such behaviors can be applied in potential medial applications such as controllable drug-delivery or microrobotics.

Keywords

microparticle magnetic particle microstructure composite deflection force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6153_MOESM1_ESM.pdf (2.4 mb)
Supporting Information

References

  1. (1).
    Q. Chen, S. C. Bae, and S. Granick, Nature, 469, 381 (2011).CrossRefGoogle Scholar
  2. (2).
    Q. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, and S. Granick, Science, 331, 199 (2011).CrossRefGoogle Scholar
  3. (3).
    R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, Nature, 457, 999 (2009).CrossRefGoogle Scholar
  4. (4).
    S. Jiang and S. Granick, Langmuir, 25, 8915 (2009).CrossRefGoogle Scholar
  5. (5).
    D. Zerrouki, J. Baudry, D. Pine, P. Chaikin, and J. Bibette, Nature 455, 380 (2008).CrossRefGoogle Scholar
  6. (6).
    S. Bhaskar, J. Hitt, S. W. L. Chang, and J. Lahann, Angew. Chem. Int. Ed., 48, 4452 (2009).CrossRefGoogle Scholar
  7. (7).
    Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc., 128, 9408 (2006).CrossRefGoogle Scholar
  8. (8).
    U. K. Cheang and M. J. Kim, Appl. Phys. Lett., 109, 034101 (2016).CrossRefGoogle Scholar
  9. (9).
    D. A. Canelas, K. P. Herlihy, and J. M. DeSimone, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1, 391 (2009).CrossRefGoogle Scholar
  10. (10).
    J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, Acc. Chem. Res., 44, 990 (2011).CrossRefGoogle Scholar
  11. (11).
    J. H. Moon, A. J. Kim, J. C. Crocker, and S. Yang, Adv. Mater., 19, 2508 (2007).CrossRefGoogle Scholar
  12. (12).
    O. Cayre, V. N. Paunov, and O. D. Velev, J. Mater. Chem., 13, 2445 (2003).CrossRefGoogle Scholar
  13. (13).
    S. H. Kim, S. J. Jeon, G. R. Yi, C. J. Heo, J. H. Choi, and S. M. Yang, Adv. Mater., 20, 1649 (2008).CrossRefGoogle Scholar
  14. (14).
    B. M. Jun, F. Serra, Y. Xia, H. S. Kang, and S. Yang, ACS Appl. Mater. Interfaces, 8, 30671 (2016).CrossRefGoogle Scholar
  15. (15).
    Z. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc., 128, 9408 (2006).CrossRefGoogle Scholar
  16. (16).
    M. M. Rahman, F. Montagne, H. Fessi, and A. Elaissari, Soft Matter, 7, 1483 (2011).CrossRefGoogle Scholar
  17. (17).
    M. Yoshida, K. H. Roh, S. Mandal, S. Bhaskar, D. Lim, H. Nandivada, and J. Lahann, Adv. Mater., 21, 4920 (2009).CrossRefGoogle Scholar
  18. (18).
    Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, J. Control. Release, 89, 341 (2003).CrossRefGoogle Scholar
  19. (19).
    J. Kim, W. A. Li, Y. Choi, S. A. Lewin, C. S. Verbeke, G. Dranoff, and D. J. Mooney, Nat. Biotechnol., 33, 64 (2015).CrossRefGoogle Scholar
  20. (20).
    L. Baraban, D. Makarov, R. Streubel, I. Monch, D. Grimm, S. Sanchez, and O. G. Schmidt, ACS Nano, 6(4), 3383 (2012).CrossRefGoogle Scholar
  21. (21).
    I. Gorelikov, L. M. Field, and E. Kumacheva, J. Am. Chem. Soc., 126, 15938 (2004).CrossRefGoogle Scholar
  22. (22).
    T. Nisisako and T. Torii, Adv. Mater., 19, 1489 (2007).CrossRefGoogle Scholar
  23. (23).
    H. Lee, J. Kim, J. Kim, S. E. Chung, S. E. Choi, and S. Kwon, Nat. Mater., 10, 747 (2011).CrossRefGoogle Scholar
  24. (24).
    A. K. Salem, P. C. Searson, and K. W. Leong, Nat. Mater., 2, 668 (2003).CrossRefGoogle Scholar
  25. (25).
    Y. Cho, J. H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, and D. J. Srolovitz, Proc. Natl. Acad. Sci., 111, 17390 (2014).CrossRefGoogle Scholar
  26. (26).
    S. Gangwal, A. Pawar, I. Kretzschmar, and O. D. Velev, Soft Matter, 6, 1413 (2010).CrossRefGoogle Scholar
  27. (27).
    G. Wu, H. Cho, D. A. Wood, A. D. Dinsmore, and S. Yang, J. Am. Chem. Soc., 139, 5095 (2017).CrossRefGoogle Scholar
  28. (28).
    S. V. Nikolov, P. D. Yeh, and A. Alexeev, ACS Macro Lett., 4, 84 (2014).CrossRefGoogle Scholar
  29. (29).
    H. W. Huang, M. S. Sakar, A. J. Petruska, S. Pané, and B. J. Nelson, Nat. Commun., 7, 12263 (2016).CrossRefGoogle Scholar
  30. (30).
    J. L. Perry, K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones, J. C. Luft, and J. M. DeSimone, Nano Lett., 12, 5304 (2012).CrossRefGoogle Scholar
  31. (31).
    J. F. Xu, Y. Z. Chen, D. Wu, L. Z. Wu, C. H. Tung, and Q. Z. Yang, Angew. Chem. Int. Ed., 52, 9738 (2013).CrossRefGoogle Scholar
  32. (32).
    S. E. Gratton, M. E. Napier, P. A. Ropp, S. Tian, and J. M. DeSimone, Pharm. Res., 25, 2845 (2008).CrossRefGoogle Scholar
  33. (33).
    S. Y. Lee and S. Yang, Chem. Commun., 51, 1639 (2015).CrossRefGoogle Scholar
  34. (34).
    Y. Cho, J. H. Shin, A. Costa, T. A. Kim, V. Kunin, J. Li, and D. J. Srolovitz, Proc. Natl. Acad. Sci., 111, 17390 (2014).CrossRefGoogle Scholar
  35. (35).
    M. Kim, S. W. Shin, C. W. Lim, J. Kim, S. H. Um, and D. Kim, Biomater. Sci., 5, 305 (2017).CrossRefGoogle Scholar
  36. (36).
    S. Belaïd, S. Laurent, M. Vermeersch, L. Vander Elst, D. Perez-Morga, and R. N. Muller, Nanotechnology, 24, 055705 (2013).CrossRefGoogle Scholar
  37. (37).
    S. Baik, Y. Park, T. J. Lee, S. H. Bhang, and C. Pang, Nature, 546, 396 (2017).CrossRefGoogle Scholar
  38. (38).
    J. Yang, S. Chen, and Y. Fang, Carbohydr. Polym., 75, 333 (2009).CrossRefGoogle Scholar
  39. (39).
    I. W. Hamley, Angew. Chem. Int. Ed., 42, 1692 (2003).CrossRefGoogle Scholar
  40. (40).
    C. Pang, T. I. Kim, W. G. Bae, D. Kang, S. M. Kim, and K. Y. Suh, Adv. Mater., 24, 475 (2012).CrossRefGoogle Scholar
  41. (41).
    C. Zhao, H. Andersen, B. Ozyilmaz, S. Ramaprabhu, G. Pastorin, and H. K. Ho, Nanoscale, 7, 18239 (2015).CrossRefGoogle Scholar
  42. (42).
    S. A. Soule and K. V. Cashman, J. Volcanol. Geotherm. Res., 129, 139 (2004).CrossRefGoogle Scholar
  43. (43).
    S. J. Choi, H. N. Kim, W. G. Bae, and K. Y. Suh, J. Mater. Chem., 21, 14325 (2011).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.SKKU Advanced Institute of Nanotechnology (SAINT)SuwonKorea
  2. 2.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonKorea
  3. 3.Biomedical Institute for Convergence at SKKU (BICS)SuwonKorea
  4. 4.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea

Personalised recommendations