Macromolecular Research

, Volume 26, Issue 12, pp 1054–1065 | Cite as

Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates

  • Sang Seok Lee
  • Shin-Hyun KimEmail author


Cholesteric liquid crystals (CLCs) are nematic liquid crystals whose molecular orientation is periodically rotated by a chiral dopant. As the helical nanostructure has the spatial modulation of refractive index, CLCs have photonic stop band along the helical axis. The wavelength for the stop band is easily controllable by external stimuli, such as magnetic and electric fields, light, and temperature as the CLC molecules are highly mobile, enabling the use of the CLCs in various optical applications. However, the CLCs are fluidic, which restricts the ease of processing and structural stability. To overcome the limitations while maintaining the stop band tunability, the fluidic CLCs have been encapsulated by a solid membrane utilizing emulsion templates. This article reviews the encapsulation technologies and applications of CLC microcapsules. We first discuss optical property of CLCs and the influence of external stimuli and molecular alignment on the property. Afterward, we describe various methods for shell formation on the surface of CLC drops in bulk emulsification processes. Recent advances in the droplet microfluidics have provided elaborate control over CLC microcapsules, which is highlighted with a few key contributions. We discuss four representative applications of CLC microcapsules, which are displays, anti-forgery materials, colorimetric sensors, and lasing resonators. Finally, we outline the current challenges and outlook on the encapsulation technologies and applications.


cholesteric liquid crystals encapsulation microcapsules photonic bandgap microfluidics 


  1. (1).
    S. T. Wu, Phys. Rev. A, 33, 1270 (1986).CrossRefGoogle Scholar
  2. (2).
    M. Urbanski, C. G. Reyes, J. Noh, A. Sharma, Y. Geng, V. Subba Rao Jampani, and J. P. F. Lagerwall, J. Phys. Condens. Matter, 29, 133003 (2017).CrossRefGoogle Scholar
  3. (3).
    N. Herzer, H. Guneysu, D. J. D. Davies, D. Yildirim, A. R. Vaccaro, D. J. Broer, C. W. M. Bastiaansen, and A. P. H. J. Schenning, J. Am. Chem. Soc., 134, 7608 (2012).CrossRefGoogle Scholar
  4. (4).
    D. J. Mulder, A. P. H. J. Schenning, and C. W. M. Bastiaansen, J. Mater. Chem. C, 2, 6695 (2014).CrossRefGoogle Scholar
  5. (5).
    N. Tamaoki, Adv. Mater., 13, 1135 (2001).CrossRefGoogle Scholar
  6. (6).
    J. Kobashi, H. Yoshida, and M. Ozaki, Nat. Photonics, 10, 389 (2016).CrossRefGoogle Scholar
  7. (7).
    N. Y. Ha, Y. Ohtsuka, S. M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, and H. Takezoe, Nat. Mater., 7, 43 (2008).CrossRefGoogle Scholar
  8. (8).
    H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, B. Taheri, P. Pálffy-Muhoray, and B. Taheri, Adv. Mater., 13, 1069 (2001).CrossRefGoogle Scholar
  9. (9).
    L. J. Chen, J. De Lin, S. Y. Huang, T. S. Mo, and C. R. Lee, Adv. Opt. Mater., 1, 637 (2013).CrossRefGoogle Scholar
  10. (10).
    M. Mitov, Adv. Mater., 24, 6260 (2012).CrossRefGoogle Scholar
  11. (11).
    M. Mitov, Soft Matter, 13, 4176 (2017).CrossRefGoogle Scholar
  12. (12).
    D. M. Makow and C. L. Sanders, Nature, 276, 48 (1978).CrossRefGoogle Scholar
  13. (13).
    M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, J. Am. Chem. Soc., 132, 18361 (2010).CrossRefGoogle Scholar
  14. (14).
    C. Bahr and H. S. Kitzerow, Chirality in Liquid Crystals, Springer, Heidelberg, 2001.Google Scholar
  15. (15).
    H. K. Bisoyi, T. J. Bunning, and Q. Li, Adv. Mater., 30, 1706512 (2018).CrossRefGoogle Scholar
  16. (16).
    S. M. Salili, J. Xiang, H. Wang, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, S. N. Sprunt, J. T. Gleeson, and A. Jákli, Phys. Rev. E, 94, 042705–1 (2016).CrossRefGoogle Scholar
  17. (17).
    S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Adv. Mater., 21, 3915 (2009).CrossRefGoogle Scholar
  18. (18).
    J. Xiang, A. Varanytsia, F. Minkowski, D. A. Paterson, J. M. D. Storey, C. T. Imrie, O. D. Lavrentovich, and P. Palffy-Muhoray. Proc. Natl. Acad. Sci. U.S.A., 113, 12925 (2016).CrossRefGoogle Scholar
  19. (19).
    L. Qin, W. Gu, J. Wei, and Y. Yu, Adv. Mater., 30, 1704941 (2018).CrossRefGoogle Scholar
  20. (20).
    Z. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, Nature, 531, 352 (2016).CrossRefGoogle Scholar
  21. (21).
    S.-Y. T. Tzeng, C.-N. Chen, and Y. Tzeng, Liq. Cryst., 37, 1221 (2010).CrossRefGoogle Scholar
  22. (22).
    Y. Huang, Y. Zhou, C. Doyle, and S. Wu, Opt. Express, 14, 1236 (2006).CrossRefGoogle Scholar
  23. (23).
    M. Y. Jeong and K. Kwak, Appl. Opt., 55, 9378 (2016).CrossRefGoogle Scholar
  24. (24).
    M. Ravnik and S. Žumer, Liq. Cryst., 36, 1201 (2009).CrossRefGoogle Scholar
  25. (25).
    Y. F. Maa and C. Hsu, J. Control. Release, 38, 219 (1996).CrossRefGoogle Scholar
  26. (26).
    S. G. Gaikwad and A. B. Pandit, Ultrason. Sonochem., 15, 554 (2008).CrossRefGoogle Scholar
  27. (27).
    N. H. Park, S. I. Park, and K. D. Suh, Colloid Polym. Sci., 279, 1082 (2001).CrossRefGoogle Scholar
  28. (28).
    J. M. Shin, M. P. Kim, H. Yang, K. H. Ku, S. G. Jang, K. H. Youm, G. R. Yi, and B. J. Kim, Chem. Mater., 27, 6314 (2015).CrossRefGoogle Scholar
  29. (29).
    S. M. Joscelyne and G. Trägårdh, J. Membr. Sci., 169, 107 (2000).CrossRefGoogle Scholar
  30. (30).
    K. Lv, D. Liu, W. Li, Q. Tian, and X. Zhou, Dyes Pigm., 94, 452 (2012).CrossRefGoogle Scholar
  31. (31).
    P. J. Dowding, R. Atkin, B. Vincent, and P. Bouillot, Langmuir, 20, 11374 (2004).CrossRefGoogle Scholar
  32. (32).
    X. Wang, D. Liu, W. Li, Q. Tian, and X. Zhou, Mol. Cryst. Liq. Cryst., 571, 57 (2013).CrossRefGoogle Scholar
  33. (33).
    V. V. Korshak and V. A. Vasnev, in Comprehensive Polymer Science and Supplements, G. Allen and J. C. Bevington, Eds., Elsevier, Oxford, 1989, Vol. 5, p 167.CrossRefGoogle Scholar
  34. (34).
    J. Guo, J. Zhang, Q. Zhang, N. Jiang, and J. Wei, RSC Adv., 3, 21620 (2013).CrossRefGoogle Scholar
  35. (35).
    N. Hiji, T. Kakinuma, and M. Araki, in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd., Oxford, 2005, Vol. 36, p 1560.CrossRefGoogle Scholar
  36. (36).
    M. Kim, K. J. Park, S. Seok, J. M. Ok, H. T. Jung, J. Choe, and D. H. Kim, ACS Appl. Mater. Interfaces, 7, 17904 (2015).CrossRefGoogle Scholar
  37. (37).
    L. J. J. M. Janssen, A. Boersma, and K. te Nijenhuis, J. Membr. Sci., 79, 11 (1993).CrossRefGoogle Scholar
  38. (38).
    N. V. N. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, and G. Y. Srawan, J. Microencapsul., 27, 187 (2010).CrossRefGoogle Scholar
  39. (39).
    A. M. Díez-Pascual and P. S. Shuttleworth, Materials, 7, 7472 (2014).CrossRefGoogle Scholar
  40. (40).
    E. Tjipto, K. D. Cadwell, J. F. Quinn, A. P. R. Johnston, N. L. Abbott, and F. Caruso, Nano Lett., 6, 2243 (2006).CrossRefGoogle Scholar
  41. (41).
    D. Churchill, J. V. Cartmell, and R. E. Miller, U.S. Patent 3697297 (1972).Google Scholar
  42. (42).
    J. H. Lee and B. Y. Lee, Appl. Phys. Lett., 99, 6 (2011).Google Scholar
  43. (43).
    I. Shiyanovskaya, A. Khan, S. Green, G. Magyar, O. Pishnyak, D. Marhefka, and J. W. Doane, J. Soc. Inf. Disp., 14, 181 (2006).CrossRefGoogle Scholar
  44. (44).
    T. Schneider, F. Nicholson, A. Khan, J. W. Doane, and L. C. Chien, in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd., Oxford, 2005, Vol. 36, p 1568.CrossRefGoogle Scholar
  45. (45).
    T. Y. Lee, T. M. Choi, T. S. Shim, R. A. M. Frijns, and S.-H. Kim, Lab Chip, 16, 3415 (2016).CrossRefGoogle Scholar
  46. (46).
    A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Phys. Rev. Lett., 99, 094502 (2007).CrossRefGoogle Scholar
  47. (47).
    R. K. Shah, H. C. Shum, A. C. Rowat, D. Lee, J. J. Agresti, A. S. Utada, L. Y. Chu, J. W. Kim, A. Fernandez-Nieves, C. J. Martinez, and D. A. Weitz, Mater. Today, 11, 18 (2008).CrossRefGoogle Scholar
  48. (48).
    P. Lin, Q. Yan, Z. Wei, Y. Chen, S. Chen, H. Wang, Z. Huang, X. Wang, and Z. Cheng, ACS Appl. Mater. Interfaces, 10, 18289 (2018).CrossRefGoogle Scholar
  49. (49).
    Q. Yan, Z. Wei, P. Lin, Z. Cheng, M. Pu, Z. Huang, and W. Lin., Opt. Mater. Express, 8, 1536 (2018).CrossRefGoogle Scholar
  50. (50).
    C. Priest, A. Quinn, A. Postma, A. N. Zelikin, J. Ralston, and F. Caruso, Lab Chip, 8, 2182 (2008).CrossRefGoogle Scholar
  51. (51).
    S. J. Aβhoff, S. Sukas, T. Yamaguchi, C. A. Hommersom, S. Le Gac, and N. Katsonis, Sci. Rep., 5, 14183 (2015).CrossRefGoogle Scholar
  52. (52).
    H. J. Seo, S. S. Lee, J. Noh, J.-W. Ka, J. C. Won, C. Park, S.-H. Kim, and Y. H. Kim, J. Mater. Chem. C, 5, 7567 (2017).CrossRefGoogle Scholar
  53. (53).
    S. S. Lee, B. Kim, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, Adv. Mater., 27, 627 (2015).CrossRefGoogle Scholar
  54. (54).
    L. Chen, L. Gong, Y. Lin, X. Jin, H. Li, S. Li, K. Che, Z. Cai, and C. J. Yang, Lap Chip, 16, 1206 (2016).CrossRefGoogle Scholar
  55. (55).
    M. Schwartz, G. Lenzini, Y. Geng, P. B. Rønne, P. Y. A. Ryan, and J. P. F. Lagerwall, Adv. Mater., 30, 1707382 (2018).CrossRefGoogle Scholar
  56. (56).
    J. G. Kim and S. Y. Park, Adv. Opt. Mater., 5, 1700243 (2017).CrossRefGoogle Scholar
  57. (57).
    J. H. Kang, S. H. Kim, A. Fernandez-Nieves, and E. Reichmanis, J. Am. Chem. Soc., 139, 5708 (2017).CrossRefGoogle Scholar
  58. (58).
    Y. Geng, J. Noh, I. Drevensek-Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, Sci. Rep., 6, 26840 (2016).CrossRefGoogle Scholar
  59. (59).
    S. S. Lee, S. K. Kim, J. C. Won, Y. H. Kim, and S.-H. Kim, Angew. Chem. Int. Ed., 127, 15481 (2015).CrossRefGoogle Scholar
  60. (60).
    J. Noh, H. L. Liang, and I. Drevensek-Olenik, and J. P. Lagerwall, J. Mater. Chem. C, 2, 806 (2014).CrossRefGoogle Scholar
  61. (61).
    S. S. Lee, H. J. Seo, Y. H. Kim, and S.-H Kim, Adv. Mater., 29, 1606894 (2017).CrossRefGoogle Scholar
  62. (62).
    A. Khan, I. Shiyanovskaya, T. Schneider, and J. W. Doane, in SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd, Oxford, 2006, Vol. 37, p 1728.CrossRefGoogle Scholar
  63. (63).
    B. Y. Lee and J. H. Lee, Curr. Appl. Phys., 11, 1389 (2011).CrossRefGoogle Scholar
  64. (64).
    J. H. Jang and S. Y. Park, Sens. Actuators, B, 241, 636 (2017).CrossRefGoogle Scholar
  65. (65).
    H.-G. Lee, S. Munir, and S.-Y. Park, ACS Appl. Mater. Interfaces, 8, 26407 (2016).CrossRefGoogle Scholar
  66. (66).
    H. Coles and S. Morris, Nat. Photonics, 4, 676 (2010).CrossRefGoogle Scholar
  67. (67).
    J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys., 75, 1896 (1994).CrossRefGoogle Scholar
  68. (68).
    M. Humar and I. Musevic, Opt. Express, 18, 26995 (2010).CrossRefGoogle Scholar
  69. (69).
    S. S. Lee, J. B. Kim, Y. H. Kim, and S.-H Kim, Sci. Adv., 4, eaat8276 (2018).CrossRefGoogle Scholar
  70. (70).
    G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, Adv. Mater., 23, 5773 (2011).CrossRefGoogle Scholar
  71. (71).
    L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, Adv. Opt. Mater. 2, 845 (2014).CrossRefGoogle Scholar
  72. (72).
    Y. Uchida, Y. Takanishi, and J. Yamamoto, Adv. Mater., 25, 3234 (2013).CrossRefGoogle Scholar
  73. (73).
    Y. L. Lin, L. L. Gong, K. J. Che, S. Sen Li, C. X. Chu, Z. P. Cai, C. J. Yang, and L. J. Chen, Appl. Phys. Lett., 110, 223301 (2017).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, KAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea

Personalised recommendations