Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1167–1172 | Cite as

Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method

  • Bumkyo Park
  • Jaemin Kim
  • Jae Young Lee
  • Suk Ho Bhang
  • Junyoung MunEmail author
  • Taekyung YuEmail author
Article
  • 138 Downloads

Abstract

In order to accurately analyze how the surfactant attached on the surface of the nanoparticles affects the catalytic activity, all other experimental conditions should be maintained except the surfactant. In this study, we control the hydrocarbon chain length of the alkylamine and carboxylic acid on the surface of manganese oxide (Mn3O4) nanoparticles while keeping their size and shape using a reverse micelle method. Despite the use of various lengths of surfactants, the size and shape of the synthesized nanoparticles remain virtually unchanged. After the mild heattreatment, they have different secondary particle morphologies even though the nano particles are preserved. Those prepared nanoparticles exhibit the characteristics voltage behavior under the galvanostatic charge and discharge. The obtained electrochemical performances are influenced by the surfactants. A coin cell having Mn3O4 nanoparticles coated by hexanoic acid and hexylamine shows the highest capacity than the other samples.

Keywords

manganese oxide nanoparticles reverse micelle alkylamine carboxylic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6147_MOESM1_ESM.pdf (652 kb)
Supporting Information

References

  1. (1).
    H. Lee, S. Habas, S. Kweskin, D. Butcher, G. Somorjai, and P. Yang, Angew. Chem. Int. Ed., 45, 7864 (2006).Google Scholar
  2. (2).
    J. Park, J. Joo, S. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007).CrossRefGoogle Scholar
  3. (3).
    Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh, J. H. Park, and T. Hyeon, Adv. Funct. Mater., 15, 503 (2005).CrossRefGoogle Scholar
  4. (4).
    M. P. Pileni, Nat. Mater., 2, 145 (2003).CrossRefGoogle Scholar
  5. (5).
    J. Lin, Y. Lin, P. Liu, M. J. Meziani, L. F. Allard, and Y. J. Sun, J. Am. Chem. Soc., 124, 11514 (2002).CrossRefGoogle Scholar
  6. (6).
    P. Tartaj and C. Serna, J. Chem. Mater., 14, 4396 (2002).CrossRefGoogle Scholar
  7. (7).
    Z. Zhou, J. Wang, X. Liu, and H. Chan, J. Mater. Chem., 11, 1704 (2001).CrossRefGoogle Scholar
  8. (8).
    C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. B, 104, 1141 (2000).CrossRefGoogle Scholar
  9. (9).
    A. Ngo, and M. P. Pileni, Adv. Mater., 12, 276 (2000).CrossRefGoogle Scholar
  10. (10).
    P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, Langmuir, 15, 1945 (1999).CrossRefGoogle Scholar
  11. (11).
    H. H. Sun and A. Manthiram, Chem. Mater., 29, 8486 (2017).CrossRefGoogle Scholar
  12. (12).
    J. Kim, H. Kang, N. Go, S. Jeong, T. Yim, Y.-N. Jo, K. T. Lee, and J. Mun, J. Mater. Chem. A, 5, 24892 (2017).CrossRefGoogle Scholar
  13. (13).
    J. Mun, J.-H. Park, W. Choi, A. Benayad, J.-H. Park, J.-M. Lee, S.-G. Doo, and S.M. Oh, J. Mater. Chem. A, 2, 19670 (2014).CrossRefGoogle Scholar
  14. (14).
    B. C. Yu, Y. Hwa, J. H. Kim, and H. J. Sohn, J. Power Sources, 260, 174 (2014).CrossRefGoogle Scholar
  15. (15).
    Y. X. Wang, J. Yang, S. L. Chou, H. K. Liu, W. X. Zhang, D. Zhao, and S. X. Dou, Nat. Commun., 6, 8689 (2015).CrossRefGoogle Scholar
  16. (16).
    C. Guan, X. Li, H. Yu, L. Mao, L. H. Wong, Q. Yan, and J. Wang, Nanoscale, 6, 13824 (2014).CrossRefGoogle Scholar
  17. (17).
    G. D. Park, J. K. Lee, and Y. C. Kang, Adv. Funct. Mater., 27, 1603399 (2017).CrossRefGoogle Scholar
  18. (18).
    H. S. Jadhav, G. M. Thorat, J. Mun, and J. G. Seo, J. Power Sources, 302, 13 (2016).CrossRefGoogle Scholar
  19. (19).
    T. Yu, J. Moon, J. Park, Y. I. Park, H. B. Na, B. H. Kim, I. C. Song, W. K. Moon, and T. Hyeon, Chem. Mater., 21, 2272 (2009).CrossRefGoogle Scholar
  20. (20).
    H. Wang, L. F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010).CrossRefGoogle Scholar
  21. (21).
    Y. Zhuang, Z. Ma, Y. Deng, X. Song, X. Zuo, X. Xiao, and J. Nan, Electrochim. Acta, 245, 448 (2017).CrossRefGoogle Scholar
  22. (22).
    M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, and X. Ding, Chem. Eng. J., 334, 2383 (2018).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyung Hee UniversityYonginKorea
  2. 2.Department of Energy and Chemical Engineering, Innovation Center for Chemical EngineeringIncheon National UniversityIncheonKorea
  3. 3.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations