Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1160–1166 | Cite as

On-demand Microfluidic Manipulation of Thermally Stable Water-in-Perfluorocarbon Emulsions

  • Mun-Bae Jang
  • Taewoo Moon
  • Jae-Hoon Choi
  • Sung-Hee Chung
  • Jong-Wook Ha
  • Jong-Min Lim
  • Seung-Kon Lee
  • Seung-Man Yang
  • Kyung-Ho Youm
  • Kwanwoo Shin
  • Gi-Ra Yi
Article

Abstract

Monodispersed thermally stable aqueous emulsions were generated in perfluorocarbon oil with penta-block copolymers of fluorocarbon and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide), which are controlled in guided channels of microfluidic devices, which were essentially the protrusion on top of microfluidic channels. Aqueous emulsions could stably follow the guide channels and sequentially stored at dead ends of guide channels. Depending on the size ratio of emulsion to trapping region, one or two emulsions were stored in two-dimensional arrays on demand. By adding pneumatic valve actuators on top of guide channel, they could be stored or released on demand or as programmed. Furthermore, by encapsulating colloidal particles and Hela cells in the thermally stable water-in-perfluorocarbon emulsions, we demonstrated that particle-laden and cellladen emulsions could be manipulated in controlled and programmed manner.

Keywords

microfluidic chip emulsions pneumatic valves on-demand manipulation hela cells 

Supplementary material

13233_2018_6144_MOESM1_ESM.pdf (1.9 mb)
Supporting Information
13233_2018_6144_MOESM2_ESM.wmv (994 kb)
Supplementary material, approximately 994 KB.
13233_2018_6144_MOESM3_ESM.wmv (175 kb)
Supplementary material, approximately 175 KB.
13233_2018_6144_MOESM4_ESM.wmv (1.2 mb)
Supplementary material, approximately 1.18 MB.
13233_2018_6144_MOESM5_ESM.wmv (14.8 mb)
Supplementary material, approximately 14.7 MB.
13233_2018_6144_MOESM6_ESM.wmv (179 kb)
Supplementary material, approximately 178 KB.
13233_2018_6144_MOESM7_ESM.wmv (207 kb)
Supplementary material, approximately 206 KB.
13233_2018_6144_MOESM8_ESM.wmv (807 kb)
Supplementary material, approximately 807 KB.
13233_2018_6144_MOESM9_ESM.wmv (604 kb)
Supplementary material, approximately 603 KB.
13233_2018_6144_MOESM10_ESM.wmv (1.1 mb)
Supplementary material, approximately 1.10 MB.
13233_2018_6144_MOESM11_ESM.wmv (526 kb)
Supplementary material, approximately 525 KB.
13233_2018_6144_MOESM12_ESM.wmv (569 kb)
Supplementary material, approximately 569 KB.
13233_2018_6144_MOESM13_ESM.wmv (691 kb)
Supplementary material, approximately 691 KB.
13233_2018_6144_MOESM14_ESM.wmv (1.9 mb)
Supplementary material, approximately 1.86 MB.
13233_2018_6144_MOESM15_ESM.wmv (3.8 mb)
Supplementary material, approximately 3.83 MB.

References

  1. (1).
    T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett., 86, 4163 (2001).CrossRefGoogle Scholar
  2. (2).
    H. A. Stone, A. D. Stroock, and A. Ajdari, Ann. Rev. Fluid Mech., 36, 381 (2004).CrossRefGoogle Scholar
  3. (3).
    T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).CrossRefGoogle Scholar
  4. (4).
    E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, Proc. Natl. Acad. Sci, USA, 106, 14195 (2009).CrossRefGoogle Scholar
  5. (5).
    O. J. Miller, A. E. Harrak, T. Mangeat, J.-C. Baret, L. Frenz, B. E. Debs, E. Mayot, M. L. Samuels, E. k. Rooney, P. Dieu, M. Galvan, D. R. Link, and A. D. Griffiths, Proc. Natl. Acad. Sci, USA, 109, 378 (2011).CrossRefGoogle Scholar
  6. (6).
    R. Williams; S. G. Peisajovich, O. J. Miller, S. Magdassi, D. S. Tawfik, and A. D. Griffiths, Nat. Methods, 3, 545 (2006).CrossRefGoogle Scholar
  7. (7).
    Q. Zhong, S. Bhattacharya, S. Kotsopoulos, J. Olson, V. Taly, A. D. Griffiths, D. R. Link, and J. W. Larson, Lab Chip, 11, 2167 (2011).CrossRefGoogle Scholar
  8. (8).
    M. S. Boybay, A Jiao, T. Glawdel, and C. L. Ren, Lab Chip, 13, 3840 (2013).CrossRefGoogle Scholar
  9. (9).
    K. Leung, H. Zahn, T. leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C.-C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen, Proc. Natl. Acad. Sci, USA, 109, 7665 (2012).CrossRefGoogle Scholar
  10. (10).
    J. U. Shim, G. Cristobal, D. R. Link, T. Thorsen, Y. W. Jia, K. Piattelli, and S. Fraden, J. Am. Chem. Soc., 129, 8825 (2007).CrossRefGoogle Scholar
  11. (11).
    H. Boukellal, S. Selimovic, Y. Jia, G. Cristobal, and S. Fraden, Lab Chip, 9, 331 (2009).CrossRefGoogle Scholar
  12. (12).
    E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, and C. N. Baroud, Lab Chip, 11, 4228 (2011).CrossRefGoogle Scholar
  13. (13).
    P. Abbyad, R. Dangla, A. Alexandrou, and C. N. Baroud. Lab. Chip, 11, 813 (2011).CrossRefGoogle Scholar
  14. (14).
    R. D. Sochol, S. Li, L. P. Lee, and L. Lin, Lab Chip, 12, 4168 (2012).CrossRefGoogle Scholar
  15. (15).
    J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen, Lab Chip, 6, 96 (2006).CrossRefGoogle Scholar
  16. (16).
    J.-H. Choi, S.-K. Lee, J.-M. Lim, S.-M. Yang, and G.-R. Yi, Lab Chip, 10, 456 (2010).CrossRefGoogle Scholar
  17. (17).
    C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile, C. H. J. Schmitz, S. Koster, H. Duan, K. J. Humphry, R. A. Scanga, J. S. Johnson, D. Pisignano, and D. A. Weitz, Lab Chip, 8, 1632 (2008).CrossRefGoogle Scholar
  18. (18).
    R. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova, P. H. David, S. K. Kotsopoulos, M. L. Samuels, J. B. Hutchison, J. W. Larson, E. J. Topol, M. P. Weiner, O. Harismendy, J. Olsen, D. R. Link, and K. A. Frazer, Nat. Biotechnol., 27, 1025 (2009).CrossRefGoogle Scholar
  19. (19).
    Y. Zeng, R. Novak, J. Shuga, M. T. Smith, and R. A. Mathies, Anal. Chem., 82, 3183 (2010).CrossRefGoogle Scholar
  20. (20).
    Z. Zhu, G. Jenkins, W. Zhang, M. Zhang, Z. Guan, and C. J. Yang, Anal. Bioanal. Chem., 403, 2127 (2012).CrossRefGoogle Scholar
  21. (21).
    H. Zhang, G. Jenkins, Y. Zou, Z. Zhu, and C. J. Yang, Anal. Chem., 84, 3599 (2012).CrossRefGoogle Scholar
  22. (22).
    B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M. Y. Lucero, A. L. Hiddessen, T. C. Legler, T. K. Kitano, M. R. Hodel, J. F. Petersen, P. W. Wyatt, E. R. Steenblock, P. H. Shah, L. J. Bousse, C. B. Troup, J. C. Mellen, D. K. Wittmann, N. G. Erndt, T. H. Cauley, R. T. Koehler, A. P. So, S. Dube, K. A. Rose, L. Montesclaros, S. Wang, D. P. Stumbo, S. P. Hodges, S. Romine, F. P. Milanovich, H. E. White, J. F. Regan, G. A. Karlin-Neumann, C. M. Hindson, S. Saxonov, and B. W. Colston, Anal. Chem., 83, 8604 (2011).CrossRefGoogle Scholar
  23. (23).
    L. B. Pinheiro, V. A. Coleman, C. M. Hindson, J. Herrmann, B. J. Hindson, S. Bhat, and K. R. Emslie, Anal. Chem., 84, 1003 (2012).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Mun-Bae Jang
    • 1
  • Taewoo Moon
    • 2
  • Jae-Hoon Choi
    • 3
  • Sung-Hee Chung
    • 2
  • Jong-Wook Ha
    • 4
  • Jong-Min Lim
    • 5
  • Seung-Kon Lee
    • 6
  • Seung-Man Yang
    • 3
  • Kyung-Ho Youm
    • 1
  • Kwanwoo Shin
    • 2
  • Gi-Ra Yi
    • 7
  1. 1.Department of Engineering ChemistryChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Department of ChemistrySogang UniversitySeoulKorea
  3. 3.Department of Chemical and Biomolecular EngineeringKAISTDaejeonKorea
  4. 4.Korea Research Institute of Chemical Technology (KRICT)DaejeonKorea
  5. 5.Department of Chemical EngineeringSoonchunhyang UniversityAsan, ChungnamKorea
  6. 6.Korea Atomic Energy Research Institute (KAERI)DaejeonKorea
  7. 7.School of Chemical EngineeringSungkyunkwan UniversitySuwon, GyeonggiKorea

Personalised recommendations