Advertisement

Macromolecular Research

, Volume 26, Issue 12, pp 1095–1098 | Cite as

High Yield Synthesis of Polystyrene Microspheres by Continuous Long Tubular Reactor and Their Application to Antiglare Film for High Resolution Displays

  • Jin Han
  • Myoung Sang You
  • Bum Jun ParkEmail author
  • Sang Hyuk ImEmail author
Communication
  • 140 Downloads

Abstract

Uniform polystyrene (PS) microspheres are synthesized by dispersion polymerization in a continuous long tubular reactor (CLTR) system, whereas the batch reactor system yields ∼1.8 fold smaller PS microspheres because the CLTR system has higher conversion (∼92%) and more number of nuclei at early stage than the batch system (∼68 %) due to better heat transfer. The uniform PS microspheres can be synthesized in CLTR system with high conversion if the residence time (reaction time) in CLTR is longer than the saturation time of reaction (conversion). In addition, when we apply the PS microspheres to antiglare (AG) film for high resolution displays, the AG film exhibits good pencil hardness of 4 H under 200 g load and internal, external, and total haze of 12.50, 4.38, and 16.88, respectively.

Keywords

continuous long tubular reactor dispersion polymerization polystyrene microspheres high resolution antiglare 

Supplementary material

13233_2018_6140_MOESM1_ESM.pdf (143 kb)
Supporting Information

References

  1. (1).
    B. E. Yoldas and D. P. Partlow, Appl. Opt., 23, 1418 (1984).CrossRefGoogle Scholar
  2. (2).
    M. A. Aegerter and N. Al-Dahoudi, J. Sol-Gel Sci. Technol., 27, 81 (2003).CrossRefGoogle Scholar
  3. (3).
    H. Jiang, K. Yu, and Y. Wang, Opt. Lett., 32, 575 (2007).CrossRefGoogle Scholar
  4. (4).
    Y. Yamada, T. Sakamoto, S. Gu, and M. Konno, J. Colloid Interface Sci., 281, 249 (2005).CrossRefGoogle Scholar
  5. (5).
    S. Omi, K. Katami, A. Yamamoto, and M. Iso, J. Appl. Polym. Sci., 51, 1 (1994).CrossRefGoogle Scholar
  6. (6).
    J. Zhang, Z. Chen, Z. Wang, W. Zhang, and N. Ming, Mater. Lett., 57, 4466 (2003).CrossRefGoogle Scholar
  7. (7).
    C. K. Ober, K. P. Lok, and M. L. Hair, J. Polym. Sci. Polym. Lett., 23, 103 (1985).CrossRefGoogle Scholar
  8. (8).
    S. T. Ha, O. O. Park, and S. H. Im, Macromol. Res., 8, 935 (2010).CrossRefGoogle Scholar
  9. (9).
    A. Olsen, H. C. Lee, M. Hatzopoulos, J. S. Duijneveldt, and B. Vincent, Langmuir, 24, 3801 (2008).CrossRefGoogle Scholar
  10. (10).
    J.-H. Park and S. Y. Yang, Macromol. Res., 24, 95 (2016).CrossRefGoogle Scholar
  11. (11).
    J. Men, R. Wang, X. Hu, H. Zhao, H. Wei, C. Hu, and B. Gao, Macromol. Res., 24, 114 (2016).CrossRefGoogle Scholar
  12. (12).
    K.-S. Park, C. Kim, J.-O. Nam, S.-M. Kang, and C.-S. Lee, Macromol. Res., 24, 529 (2016).CrossRefGoogle Scholar
  13. (13).
    J. Maiti and A. A. Basfar, Macromol. Res., 25, 120 (2017).CrossRefGoogle Scholar
  14. (14).
    S. A. Khan, A. Günther, M. A. Schmidt, and K. F. Jensen, Langmuir, 20, 8604 (2004).CrossRefGoogle Scholar
  15. (15).
    M. Müller, M. F. Cunningham, and R. A. Hutchinson, Macromol. React. Eng., 2, 31 (2008).CrossRefGoogle Scholar
  16. (16).
    F. J. Schork and J. Guo, Macromol. React. Eng., 2, 287 (2008).CrossRefGoogle Scholar
  17. (17).
    J. P. Russum, C. W. Jones, and F. J. Schork, Ind. Eng. Chem. Res., 44, 2484 (2005).CrossRefGoogle Scholar
  18. (18).
    D. A. Paquet Jr. and W. H. Ray, AIChE J., 40, 73 (1994).CrossRefGoogle Scholar
  19. (19).
    D. Y. Lee, J. F. Kuo, J. H. Wang, and C. Y. Chen, Polym. Eng. Sci., 30, 187 (1990).CrossRefGoogle Scholar
  20. (20).
    D. Y. Lee, J. H. Wang, and J. F. Kuo, Polym. Eng. Sci., 32, 198 (1992).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyung Hee UniversityGyeonggiKorea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations