Several formulas and identities related to Catalan-Qi and q-Catalan-Qi numbers
Article
First Online:
- 11 Downloads
Abstract
In the paper, the author generalizes several formulas and series identities involving the Catalan numbers and establishes several new formulas and series identities involving the Catalan-Qi numbers and q-Catalan-Qi numbers.
Key words
Formula Catalan numbers Catalan-Qi number q-analogue q-Catalan-Qi number binomial transform hypergeometric seriesPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgment
The author is grateful to an anonymous referee for careful corrections to and valuable comments on the original version of this paper. The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project No. 125-1440.
References
- 1.U. Abel, Reciprocal Catalan sums: Solution to problem 11765, Amer. Math. Monthly, 123(4) (2016), 405–406. https://doi.org/10.4169/amer.math.monthly.123.4.399.Google Scholar
- 2.G. E. Andrews, Catalan numbers q-Catalan numbers and hypergeometric series, J. Comb. Th. (A), 44 (1987), 267–273. https://doi.org/10.1016/0097-3165(87)90033-1.MathSciNetzbMATHGoogle Scholar
- 3.G. E. Andrews, q-Catalan identities, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, (2010), 183–190.zbMATHGoogle Scholar
- 4.W. Chammam, F. Marcellán, and R. Sfaxi, Orthogonal polynomials, Catalan numbers, and a general Hankel determinant evaluation, Linear Algebra Appl., 436 (2012), 2105–2116. https://doi.org/10.1016/j.laa.2011.10.010.MathSciNetzbMATHGoogle Scholar
- 5.K.-W. Chen, Identities from the binomial transform, J. Number Theory, 124(1) (2007), 142–150. https://doi.org/10.1016/j.jnt.2006.07.015.MathSciNetzbMATHGoogle Scholar
- 6.I. Gessel, Super ballot numbers, J. Symb. Comput., 14 (1992), 179–194. https://doi.org/10.1016/0747-7171(92)90034-2.MathSciNetzbMATHGoogle Scholar
- 7.B-N. Guo and F. Qi, On the Wallis formula, International Journal of Analysis and Applications, 8(1) (2015), 30–38.MathSciNetzbMATHGoogle Scholar
- 8.C. Krattenthaler, Advanced determinant calculus: A complement, Linear Algebra Appl., 411 (2005), 68–166. https://doi.org/10.1016/j.laa.2005.06.042.MathSciNetzbMATHGoogle Scholar
- 9.C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin., 42 (The Andrews Festschrift) (1999), (Article B42q).Google Scholar
- 10.M. Mahmoud and F. Qi, Three identities of the Catalan-Qi numbers, Mathematics, 4(2) (2016), Article 35. https://doi.org/10.3390/math4020035.zbMATHGoogle Scholar
- 11.F. Qi, X.-T. Shi, and F.-F. Liu, Expansions of the exponential and the logarithm of power series and applications, Arab. J. Math., 6(2) (2017), 95–108. https://doi.org/10.1007/s40065-017-0166-4.MathSciNetzbMATHGoogle Scholar
- 12.F. Qi, X.-T. Shi, and F.-F. Liu, An integral representation, complete monotonicity, and inequalities of the Catalan numbers, Filomat, 32(2) (2018), 575–587. https://doi.org/10.2298/FIL1802575Q.MathSciNetGoogle Scholar
- 13.F. Qi and B.-N. Guo, Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers, Cogent Mathematics, (2016), 3: 1179379. https://doi.org/10.1080/23311835.2016.1179379.MathSciNetzbMATHGoogle Scholar
- 14.F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, The Catalan numbers: A generalization, an exponential representation, and some properties, J. Comput. Anal. Appl., 23(5) (2017), 937–944.MathSciNetGoogle Scholar
- 15.F. Qi and B.-N. Guo, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers, Chapter 5 in Mathematical Analysis and Applications: Selected Topics, 101–133; Edited by M. Ruzhansky, H. Dutta, and R. P. Agarwal; Wiley, 2018. https://doi.org/10.1002/9781119414421.ch5.Google Scholar
- 16.F. Qi and B.-N. Guo, Integral representations of the Catalan numbers and their applications, Mathematics5(3) (2017), Article 40. https://doi.org/10.3390/math5030040.zbMATHGoogle Scholar
- 17.F. Qi and B.-N. Guo, Logarithmically complete monotonicity of a function related to the Catalan-Qi function, Acta Universitatis Sapientiaem Mathematica, 8(1) (2016), 93–102. https://doi.org/10.1515/ausm-2016-0006.MathSciNetzbMATHGoogle Scholar
- 18.F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus (2016), 5: 1126. https://doi.org/10.1186/s40064-016-2793-1.Google Scholar
- 19.F. Qi, X.-T. Shi, and B.-N. Guo, Integral representations of the large and little Schröder numbers, Indian J. Pure Appl. Math., 49(1) (2018), 23–38. https://doi.org/10.1007/s13226-018-0258-7.MathSciNetzbMATHGoogle Scholar
- 20.F. Qi, X.-T. Shi, M. Mahmoud, and F-F. Liu, Schur-convexity of the Catalan-Qi function related to the Catalan numbers, Tbilisi Mathematical Journal, 9(2) (2016), 141–150. https://doi.org/10.1515/tmj-2016-0026.MathSciNetzbMATHGoogle Scholar
- 21.F. Qi, An improper integral, the beta function, the Wallis ratio, and the Catalan numbers, Problemy Analiza-Issues of Analysis, 7(25)(1) (2018), 104–115. https://doi.org/10.15393/j3.art.2018.4370.MathSciNetGoogle Scholar
- 22.F. Qi, A. Akkurt, and H. Yildirim, Catalan numbers, k-gamma and k-beta functions, and parametric integrals, J. Computational Analysis and Applications, 25(6) (2018), 1036–1042.MathSciNetGoogle Scholar
- 23.F. Qi, Parametric integrals, the Catalan numbers, and the beta function, Elemente der Mathematik, 72(3) (2017), 103–110. https://doi.org/10.4171/EM/332.MathSciNetzbMATHGoogle Scholar
- 24.C. Radoux, Calcul effectif de certains déterminants de Hankel, Bull. Soc. Math. Belg. Sér. B, 31 (1979), 49–55.MathSciNetzbMATHGoogle Scholar
- 25.C. Radoux, Déterminant de Hankel construit sur des polynomes liés aux nombres de dérangements, European J. Combin., 12 (1991), 327–329. https://doi.org/10.1016/S0195-6698(13)80115-1.MathSciNetzbMATHGoogle Scholar
- 26.L. Yin and F. Qi, Several series identities involving the Catalan numbers, Transactions of A. Razmadze Mathematical Institute, 172(3) (2018), 466–474. https://doi.org/10.1016/j.trmi.2018.07.001.MathSciNetzbMATHGoogle Scholar
- 27.Q. Zou, Congruences from q-Catalan identities, Transactions on Combinatorics, 5(4) (2016), 57–67.MathSciNetGoogle Scholar
- 28.Q. Zou, Analogues of several identities and supercongruences for the Catalan-Qi numbers, J. Inequal. Spec. Funct., 7(4) (2016), 235–241.MathSciNetGoogle Scholar
- 29.Q. Zou, The q-binomial inverse formula and a recurrence relation for the q-Catalan-Qi numbers, J. Math. Anal., 8(1) (2017), 176–182.MathSciNetGoogle Scholar
Copyright information
© Indian National Science Academy 2019