Indian Journal of Pure and Applied Mathematics

, Volume 50, Issue 4, pp 1011–1019 | Cite as

Multipliers of vector valued Beurling algebra on a discrete Abelian semigroup

  • Prakash A. DabhiEmail author
  • Manish Kumar PandeyEmail author


Let S be an abelian semigroup with weight function ω and Mω(S) be the semigroup of all ω-bounded multipliers on S with the induced weight ω̃. Let \(\tilde{\omega}\) be a commutative Banach algebra with bouded approximate identity and \(M(\mathcal{A})\) be its multiplier algebra. It is shown that if S is cancellative and ω has DN-property, then the multiplier algebra of the \(\mathcal{A}\)- valued Beurling algebra of (S, ω) coincides with the \(M(\mathcal{A})\)- valued Beurling algebra of Mω(S) with induced weight. We shall also determine multipliers of arbitrary vector valued Beurling algebra under some natural conditions.

Key words

Weighted semigroup multipliers of a semigroup Beurling algebra multiplier algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to the referee.


  1. 1.
    S. J. Bhatt, P. A. Dabhi, and H. V. Dedania, Multipliers of weighted semigroups and associated Beurling Banach algebras, Proc. Indian Acad. Sci. (Math. Sci.), 121(4) (2011), 417–433.MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. J. Bhatt, P. A. Dabhi, and H. V. Dedania, The multiplier algebra of a Beurling algebra, Bull. Aust. Math. Soc., 90(1) (2014), 113–120.MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs Series, 24 Clarendon Press, Oxford, 2000.zbMATHGoogle Scholar
  4. 4.
    H. G. Dales and H. V. Dedania, Weighted convolution algebras on subsemigroups of the real line, Dissertationes Mathematicae (Rozprawy Matematyczne), 459 (2009), 1–60.zbMATHGoogle Scholar
  5. 5.
    E. Hewitt and H. S. Zuckerman, The ℓ1-algebra of a commutative semigroup, Trans. Amer. Math. Soc., 83 (1956), 70–97.MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Kaniuth, A course in commutative Banach algebras, Springer, New York, 2009.CrossRefGoogle Scholar
  7. 7.
    C. D. Lahr, Multipliers for certain convolution measure algebras, Trans. American Math. Soc., 185 (1973), 165–181.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Larsen, An introduction to the theory of multipliers, Springer, Berlin, 1971.CrossRefGoogle Scholar

Copyright information

© Indian National Science Academy 2019

Authors and Affiliations

  1. 1.Department of MathematicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations