Advertisement

Datenbank-Spektrum

, Volume 19, Issue 3, pp 199–208 | Cite as

Analyzing Temporal Graphs with Gradoop

  • Christopher RostEmail author
  • Andreas Thor
  • Erhard Rahm
Schwerpunktbeitrag
  • 38 Downloads

Abstract

The temporal analysis of evolving graphs is an important requirement in many domains but hardly supported in current graph database and graph processing systems. We therefore have started with extending the distributed graph analysis framework Gradoop for temporal graph analysis by adding time properties to vertices, edges and graphs and using them within graph operators. We outline these extensions and illustrate their use within analysis workflows. We further describe the implementation of the snapshot and diff operators and evaluated them.

Keywords

Temporal Property Graph Temporal Graph Data Model Evolving Graph Analysis 

Notes

Acknowledgements

This work is partially funded by the German Federal Ministry of Education and Research under grant BMBF 01IS18026B and by Sächsische Aufbau Bank (SAB) and the European Regional Development (EFRE) under grant No. 100302179.

References

  1. 1.
    Cheng R et al (2012) Kineograph: taking the pulse of a fast-changing and connected world. Proc EuroSys:85–98.  https://doi.org/10.1145/2168836.2168846 CrossRefGoogle Scholar
  2. 2.
    Date CJ, Darwen H, Lorentzos N (2002) Temporal data & the relational model. Morgan Kaufmann Publishers Inc. San Francisco, CA, USAGoogle Scholar
  3. 3.
    Erling O, Averbuch A, Larriba-Pey J, Chafi H, Gubichev A, Prat A, Pham MD, Boncz P (2015) The LDBC social network benchmark: Interactive workload. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. ACM, New York, pp 619–630.  https://doi.org/10.1145/2723372.2742786 Google Scholar
  4. 4.
    Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125.  https://doi.org/10.1016/j.physrep.2012.03.001 CrossRefGoogle Scholar
  5. 5.
    Junghanns M, Kießling M, Teichmann N, Gómez K, Petermann A, Rahm E (2018) Declarative and distributed graph analytics with GRADOOP. Proc VLDB Endow 11(12):2006–2009CrossRefGoogle Scholar
  6. 6.
    Junghanns M, Petermann A, Neumann M, Rahm E (2017) Management and analysis of big graph data: current systems and open challenges. In: Handbook of big data technologies. Springer, Cham, pp 457–505CrossRefGoogle Scholar
  7. 7.
    Junghanns M, Petermann A, Rahm E (2017) Distributed grouping of property graphs with GRADOOP. Proc BTW, P-265:103–122Google Scholar
  8. 8.
    Junghanns M, Petermann A, Teichmann N, Gómez K, Rahm E (2016) Analyzing extended property graphs with Apache Flink. In: Proc. SIGMOD Workshop on Network Data AnalyticsGoogle Scholar
  9. 9.
    Khurana U, Deshpande A (2013) Efficient snapshot retrieval over historical graph data. Proc ICDE, 997–1008.  https://doi.org/10.1109/icde.2013.6544892 CrossRefGoogle Scholar
  10. 10.
    Kulkarni K, Michels J (2012) Temporal features in SQL: 2011. SIGMOD Rec 41(3):34–43CrossRefGoogle Scholar
  11. 11.
    Ligtenberg W, Pei Y, Fletcher G, Pechenizkiy M (2018) Tink: A temporal graph analytics library for Apache Flink. In: WWW ’18 Companion Proceedings of the The Web Conference 2018, pp 71–72.  https://doi.org/10.1145/3184558.3186934 CrossRefGoogle Scholar
  12. 12.
    Miao Y et al (2015) Immortalgraph: a system for storage and analysis of temporal graphs. ACM Trans Storage 11(3):14CrossRefGoogle Scholar
  13. 13.
    Pigné Y, Dutot A, Guinand F, Olivier D (2008) Graphstream: A tool for bridging the gap between complex systems and dynamic graphs. CoRRGoogle Scholar
  14. 14.
    Rost C, Thor A, Rahm E (2019) Temporal graph analysis using gradoop. In: BTW 2019 - Workshopband. Lecture Notes in Informatics (LNI), vol P‑290. Gesellschaft für Informatik, Bonn, pp 109–118Google Scholar
  15. 15.
    Steer BA, Cuadrado F, Clegg RG (2020) Raphtory: Streaming analysis of distributed temporal graphs. Future Generation Computer Systems 102:453–464.  https://doi.org/10.1016/j.future.2019.08.022 CrossRefGoogle Scholar
  16. 16.
    Then M, Kersten T, Günnemann S, Kemper A, Neumann T (2017) Automatic algorithm transformation for efficient multi-snapshot analytics on temporal graphs. Proc VLDB Endow 10(8):877–888CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of LeipzigLeipzigGermany
  2. 2.Leipzig University of TelecommunicationsLeipzigGermany

Personalised recommendations