Abstract
Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and gradoop. Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to gradoop and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.
Keywords
Graph analysis Graph visualization Graph sampling Gradoop KNIMENotes
Acknowledgements
The BIGGR project is joint work with KNIME and we thank Tobias Kötter und Mark Ortmann for assistance with technical parts of KNIME.
Funding
This work was funded by the German Federal Ministry of Education and Research within the projects BIGGR (BMBF 01IS16030B) and ScaDS Dresden/Leipzig (BMBF 01IS14014B).
References
- 1.Junghanns M, Petermann A, Neumann M, Rahm E (2017) Management and analysis of big graph data: current systems and open challenges. In: Handbook of big data technologies. Springer, Berlin, Heidelberg, pp 457–505 https://doi.org/10.1007/978-3-319-49340-4-14 CrossRefGoogle Scholar
- 2.Junghanns M, Petermann A, Gómez K, Rahm E (2015) Gradoop: scalable graph data management and analytics with Hadoop. arXiv preprint 150600548Google Scholar
- 3.Junghanns M, Kiessling M, Teichmann N, Gómez K, Petermann A, Rahm E (2018) Declarative and distributed graph analytics with GRADOOP. PVLDB 11:2006–2009. https://doi.org/10.14778/3229863.3236246 Google Scholar
- 4.Rahm E, Nagel WE, Peukert E, Jäkel R, Gärtner F, Stadler PF, Wiegreffe D, Zeckzer D, Lehner W (2019) Big Data competence center ScaDS Dresden/Leipzig: Overview and selected research activities. Datenbank Spektrum 19(1). https://doi.org/10.1007/s13222-018-00303-6 Google Scholar
- 5.Junghanns M, Petermann A, Teichmann N, Gómez K, Rahm E (2016) Analyzing extended property graphs with Apache Flink. In: Proc. ACM SIGMOD Workshop on Network Data Analytics (NDA). https://doi.org/10.1145/2980523.2980527 Google Scholar
- 6.Junghanns M, Kiessling M, Averbuch A, Petermann A, Rahm E (2017) Cypher-based graph pattern matching in GRADOOP. In: Proc. 7th Int. Workshop on Graph Data Management Experiences & Systems (GRADES). https://doi.org/10.1145/3078447.3078450 Google Scholar
- 7.Junghanns M, Petermann A, Rahm E (2017) Distributed grouping of property graphs with GRADOOP. In: Proc. Database systems for Business, Technology and Web (BTW), pp 103–122Google Scholar
- 8.Petermann A, Junghanns M, Rahm E (2017) DIMSpan: Transactional frequent subgraph mining with distributed in-memory dataflow systems. In: Proc. 4th IEEE/ACM Int. Conf. on Big Data Computing, Applications and Technologies (BDCAT), pp 237–246 https://doi.org/10.1145/3148055.3148064 Google Scholar
- 9.Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME-the Konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explor Newsl 11(1):26–31. https://doi.org/10.1145/1656274.1656280 CrossRefGoogle Scholar
- 10.Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and the Kepler system: Research articles. Concurr Comput Pract Exper 18(10):1039–1065. https://doi.org/10.1002/cpe.994 CrossRefGoogle Scholar
- 11.Hofmann M, Klinkenberg R (2013) Rapidminer: data mining use cases and business analytics applications. Chapman & Hall/CRC, Boca Raton, FLGoogle Scholar
- 12.Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Cech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning BA, Guerler A, Hillman-Jackson J, Kuster GV, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw343 Google Scholar
- 13.da Silva RF, Filgueira R, Pietri I, Jiang M, Sakellariou R, Deelman E (2017) A characterization of workflow management systems for extreme-scale applications. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2017.02.026 Google Scholar
- 14.Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, Nieva de la Hidalga A, Balcazar Vargas M, Sufi S, Goble C (2013) The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 41:W557–561. https://doi.org/10.1093/nar/gkt328 CrossRefGoogle Scholar
- 15.Grunzke R, Jug F, Schuller B, Jäkel R, Myers G, Nagel WE (2016) Seamless HPC integration of data-intensive KNIME workflows via UNICORE. In: Euro-Par Workshops. Lecture Notes in Computer Science, vol 10104. Springer, Berlin, Heidelberg, pp 480–491 https://doi.org/10.1007/978-3-319-58943-5-39 Google Scholar
- 16.Riazi S, Norris B (2016) Graphflow: Workflow-based big graph processing. In: 2016 IEEE Int. Conf. on Big Data, pp 3336–3343 https://doi.org/10.1109/BigData.2016.7840993 CrossRefGoogle Scholar
- 17.Riazi S (2016) SparkGalaxy: Workflow-based Big Data processing. http://www.cs.uoregon.edu/Reports/DRP-201603-Riazi.pdf. Accessed 1 Mar 2019 (directed Research Proposal)Google Scholar
- 18.Herman I, Melançon G, Marshall MS (2000) Graph visualization and navigation in information visualization: a survey. IEEE Trans Vis Comput Graph 6(1):24–43. https://doi.org/10.1109/2945.841119 CrossRefGoogle Scholar
- 19.Bikakis N, Sellis TK (2016) Exploration and visualization in the web of big linked data: a survey of the state of the art. CoRR abs/1601.08059Google Scholar
- 20.Caldarola EG, Picariello A, Rinaldi A, Sacco M (2016) Exploration and visualization of big graphs – the DBpedia case study. In: Proc. 8th Int. Conf. on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR) https://doi.org/10.5220/0006046802570264 Google Scholar
- 21.Jugel U, Jerzak Z, Hackenbroich G, Markl V (2016) VDDA: automatic visualization-driven data aggregation in relational databases. VLDB J 25(1):53–77. https://doi.org/10.1007/s00778-015-0396-z CrossRefGoogle Scholar
- 22.Rodriguez M, Neubauer P (2010) Constructions from dots and lines. Bull Am Soc Inf Sci Technol 36(6):35–41CrossRefGoogle Scholar
- 23.Rodriguez M, Neubauer P (2012) The graph traversal pattern. In: Graph Data Management: Techniques and Applications IGI Global, pp 29–46CrossRefGoogle Scholar
- 24.Kricke M, Peukert E, Rahm E (2019) Graph data transformations in gradoop. Proc BTW conf.Google Scholar
- 25.Hudak P (1989) Conception, evolution, and application of functional programming languages. ACM Comput Surv 21(3):359–411. https://doi.org/10.1145/72551.72554 CrossRefGoogle Scholar
- 26.Seidman SB (1983) Network structure and minimum degree. Soc Networks 5(3):269–287MathSciNetCrossRefGoogle Scholar
- 27.Giatsidis C, Malliaros FD, Tziortziotis N, Dhanjal C, Kiagias E, Thilikos DM, Vazirgiannis M (2016) A k-core decomposition framework for graph clustering. CoRR abs/1607.02096Google Scholar
- 28.Hu P, Lau WC (2013) A survey and taxonomy of graph sampling. CoRR abs/1308.5865Google Scholar
- 29.Rostami MA, Saeedi A, Peukert E, Rahm E (2018) Interactive visualization of large similarity graphs and entity resolution clusters. In: Proc. Extending Database Technology (EDBT) https://doi.org/10.5441/002/edbt.2018.86 Google Scholar
- 30.Kobourov SG (2012) Spring embedders and force directed graph drawing algorithms. Computing Research Repository (CoRR) abs/1201.3011Google Scholar