ScaDS Research on Scalable Privacy-preserving Record Linkage

  • Martin Franke
  • Marcel Gladbach
  • Ziad SehiliEmail author
  • Florens Rohde
  • Erhard Rahm


Privacy-preserving record linkage (PPRL) supports the matching and integration of person-related data, e.g., on patients or customers without compromising privacy. It is based on the encoding of sensitive attribute values needed for matching and often involves trusted parties for linkage. We report on recent research results from the Big Data center ScaDS Dresden/Leipzig to improve the efficiency, scalability and quality of PPRL, and to apply PPRL in the medical domain. In particular, we present the use of pivot-based filtering techniques and LSH (locality-sensitive hashing)-based blocking to reduce the number of comparisons. Furthermore, we report on parallel linkage implementations based on Apache Flink supporting scalability to millions of records.


Record Linkage Privacy Data Integration Blocking Metric Space LSH Apache Flink 



This work was partially funded by the German Federal Ministry of Education and Research within the project Competence Center for Scalable Data Services and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B).


  1. 1.
    Bachteler T, Reiher J, Schnell R (2013) Similarity filtering with multibit trees for record linkage. GRLC, Working Paper WP-GRLC-2013-02Google Scholar
  2. 2.
    Bloom B (1970) Space/time trade-offs in hash coding with allowable errors. CACM 13(7):422–426. CrossRefzbMATHGoogle Scholar
  3. 3.
    Brown AP, Borgs C, Randall SM, Schnell R (2017) Evaluating privacy-preserving record linkage using cryptographic long-term keys and multibit trees on large medical datasets. BMC Med Inform Decis Mak 17(1):83. CrossRefGoogle Scholar
  4. 4.
    Carbone P et al (2015) Apache Flink: Stream and batch processing in a single engine. IEEE TCDE 36(4):28–38Google Scholar
  5. 5.
    Christen P (2012) Data matching: concepts and techniques for record linkage, entity resolution, and duplicate detection. Springer, Berlin, Heidelberg CrossRefGoogle Scholar
  6. 6.
    Christen P (2012) A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans Knowl Data Eng 24(9):1537–1555. CrossRefGoogle Scholar
  7. 7.
    Christen P, Vatsalan D (2013) Flexible and extensible generation and corruption of personal data. In: ACM CIKM, pp 1165–1168 Google Scholar
  8. 8.
    Clark DE (2004) Practical introduction to record linkage for injury research. Inj Prev 10(3):186–191. CrossRefGoogle Scholar
  9. 9.
    Durham EA (2012) A framework for accurate, efficient private record linkage. Faculty of the Graduate School of Vanderbilt University, Nashville, TN, (Ph.D. thesis)Google Scholar
  10. 10.
    Elmagarmid AK, Ipeirotis PG, Verykios VS (2007) Duplicate record detection: a survey. IEEE Trans Knowl Data Eng 19(1):1–16. CrossRefGoogle Scholar
  11. 11.
    Franke M, Sehili Z, Gladbach M, Rahm E (2018) Post-processing methods for high quality privacy-preserving record linkage. In: Data privacy management, Cryptocurrencies and Blockchain technology. Springer, Berlin, Heidelberg, pp 263–278 CrossRefGoogle Scholar
  12. 12.
    Franke M, Sehili Z, Rahm E (2018) Parallel privacy preserving record linkage using LSH-based blocking. In: IoTBDS, pp 195–203 Google Scholar
  13. 13.
    Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: Proceedings of the 25th VLDB Conference, vol 99, pp 518–529Google Scholar
  14. 14.
    Gladbach M, Sehili Z, Kudraß T, Christen P, Rahm E (2018) Distributed privacy-preserving record linkage using pivot-based filter techniques. In: ICDE-W, pp 33–38 Google Scholar
  15. 15.
    Hernández MA, Stolfo SJ (1998) Real-world data is dirty: data cleansing and the merge/purge problem. Data Min Knowl Discov 2(1):9–37. CrossRefGoogle Scholar
  16. 16.
    Herzog TN, Scheuren FJ, Winkler WE (2007) Data quality and record linkage techniques, 1st edn. Springer, Berlin, Heidelberg zbMATHGoogle Scholar
  17. 17.
    Jiang Y, Li G, Feng J, Li WS (2014) String similarity joins: an experimental evaluation. Proc VLDB Endow 7(8):625–636. CrossRefGoogle Scholar
  18. 18.
    Köpcke H, Rahm E (2010) Frameworks for entity matching: a comparison. DKE 69(2):197–210. CrossRefGoogle Scholar
  19. 19.
    Kuehni CE, Rueegg CS, Michel G, Rebholz CE, Strippoli MPF, Niggli FK, Egger M, von der Weid NX (2012) Cohort profile: the Swiss childhood cancer survivor study. Int J Epidemiol 41(6):1553–1564. CrossRefGoogle Scholar
  20. 20.
    Lablans M, Borg A, Ückert F (2015) A RESTful interface to pseudonymization services in modern web applications. BMC Med Inform Decis Mak. Google Scholar
  21. 21.
    Malin BA, Emam KE, O’Keefe CM (2013) Biomedical data privacy: problems, perspectives, and recent advances. J Am Med Inform Assoc 20(1):2–6. CrossRefGoogle Scholar
  22. 22.
    Mao R, Zhang P, Li X, Liu X, Lu M (2016) Pivot selection for metric-space indexing. Int J Mach Learn Cybern. Google Scholar
  23. 23.
    Odell M, Russell R (1918) The soundex coding system. US Patents 1261167Google Scholar
  24. 24.
    Rahm E, Do HH (2000) Data cleaning: problems and current approaches. IEEE Data Eng Bull 23(4):3–13Google Scholar
  25. 25.
    Schnell R, Bachteler T, Reiher J (2009) Privacy-preserving record linkage using Bloom filters. BMC Med Inform Decis Mak 9(1):41. CrossRefGoogle Scholar
  26. 26.
    Schnell R, Bachteler T, Reiher J (2011) A novel error-tolerant anonymous linking code. GRLC, No. WP-GRLC-2011-02Google Scholar
  27. 27.
    Schnell R, Borgs C (2016) Randomized response and balanced bloom filters for privacy preserving record linkage. In: IEEE ICDMW, pp 218–224 Google Scholar
  28. 28.
    Sehili Z, Kolb L, Borgs C, Schnell R, Rahm E (2015) Privacy preserving record linkage with PPJoin. In: Proc. BTWGoogle Scholar
  29. 29.
    Sehili Z, Rahm E (2016) Speeding up privacy preserving record linkage for metric space similarity measures. Datenbank Spektrum 16(3):227–236. CrossRefGoogle Scholar
  30. 30.
    Vatsalan D, Christen P, Verykios VS (2013) A taxonomy of privacy-preserving record linkage techniques. Inf Syst 38(6):946–969. CrossRefGoogle Scholar
  31. 31.
    Vatsalan D, Sehili Z, Christen P, Rahm E (2017) Privacy-preserving record linkage for big data: current approaches and research challenges. Handb Big Data Technol. Google Scholar
  32. 32.
    Winter A, Stäubert S, Ammon D, Aiche S, Beyan O, Bischoff V, Daumke P, Decker S, Funkat G, Gewehr JE, de Greiff A, Haferkamp S, Hahn U, Henkel A, Kirsten T, Klöss T, Lippert J, Löbe M, Lowitsch V, Maassen O, Maschmann J, Meister S, Mikolajczyk R, Nüchter M, Pletz MW, Rahm E, Riedel M, Saleh K, Schuppert A, Smers S, Stollenwerk A, Uhlig S, Wendt T, Zenker S, Fleig W, Marx G, Scherag A, Löffler M (2018) Smart Medical Information Technology for Healthcare (SMITH). Methods Inf Med 57(1):e92–e105. Google Scholar
  33. 33.
    Xiao C, Wang W, Lin X, Yu JX (2008) Efficient similarity joins for near duplicate detection. In: Proceedings of the 17th International Conference on World Wide Web, pp 131–140 CrossRefGoogle Scholar
  34. 34.
    Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric space approach. Springer, Berlin, Heidelberg zbMATHGoogle Scholar

Copyright information

© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Database Group, Institute of Computer ScienceUniversity of LeipzigLeipzigGermany

Personalised recommendations