, Volume 18, Issue 2, pp 113–119 | Cite as

The Information Retrieval Group at the University of Duisburg-Essen

  • Ahmet AkerEmail author
  • Norbert Fuhr
Datenbankgruppen vorgestellt


This document describes the IR research group at the University of Duisburg-Essen, which works on quantitative models of interactive retrieval, social media analysis, multilingual argument retrieval and validity of IR experiments.


Interactive retrieval Social media analysis Argument retrieval Validity 


  1. 1.
    Aker A, Derczynski L, Bontcheva K (2017) Simple open stance classification for rumour analysis. CoRR abs/1708.05286. Google Scholar
  2. 2.
    Aker A, Kanoulas E, Gaizauskas RJ (2012) A light way to collect comparable corpora from the web. LREC, Citeseer, pp 15–20Google Scholar
  3. 3.
    Aker A, Paramita ML, Gaizauskas RJ (2013) Extracting bilingual terminologies from comparable corpora. ACL 2013 – 51st Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. 1, pp 402–411Google Scholar
  4. 4.
    Aker A, Zhang H (2017) Projection of argumentative corpora from source to target languages. Proceedings of the 4th Workshop on Argument Mining, pp 67–72Google Scholar
  5. 5.
    Aker A, Sliwa A, Ma Y, Lui R, Borad N, Ziyaei S, Ghobadi M (2017) What works and what does not: classifier and feature analysis for argument mining. Proceedings of the 4th Workshop on Argument Mining, pp 91–96Google Scholar
  6. 6.
    Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econ Perspect 31(2):211–236CrossRefGoogle Scholar
  7. 7.
    Douglas K, Ang CS, Deravi F (2017) Farewell to truth? conspiracy theories and fake news on social media. Psychologist.
  8. 8.
    Dungs S, Fuhr N (2017) Advanced hidden markov models for recognizing search phases. Proceedings Of The 3rd ACM International Conference on the Theory of Information Retrieval., ICTIR ’17. ACM, New York, pp 1–1 Google Scholar
  9. 9.
    Dungs S, Aker A, Bontche K, Fuhr N (2018) Stance based rumour veracity prediction. Proceedings Of COLING.Google Scholar
  10. 10.
    Ferro N, Fuhr N, Jarvelin K, Kando N, Lippold M, Zobel J (2016) Increasing reproducibility in ir: findings from the dagstuhl seminar on ”reproducibility of data-oriented experiments in e‑science”. SIGIR Forum 50(1):68–82 ( Scholar
  11. 11.
    Ferro N, Fuhr N, Grefenstette G, Konstan JA, Castells P, Daly EM, Declerck T, Ekstrand MD, Geyer W, Gonzalo J, Kuflik T, Linden K, Magnini B, Nie JY, Perego R, Shapira B, Soboroff I, Tintarev N, Verspoor K, Willemsen MC, Zobel J (2018a) The Dagstuhl Perspectives Workshop on performance modeling and prediction. SIGIR Forum 52(1):
  12. 12.
    Ferro N, Fuhr N, Grefenstette G, Konstan JA, Castells P, Daly EM, Declerck T, Ekstrand MD, Geyer W, Gonzalo J, Kuflik T, Linden K, Magnini B, Nie JY, Perego R, Shapira B, Soboroff I, Tintarev N, Verspoor K, Willemsen MC, Zobel J (2018b) Building a predictive science for performance of information retrieval, natural language processing, and recommender systems applications (dagstuhl perspectives workshop 17442). Dagstuhl Manifestos 8Google Scholar
  13. 13.
    Freire J, Fuhr N, Rauber A (2016) Reproducibility of data-oriented experiments in e‑science. Dagstuhl Rep 6(1):108–159Google Scholar
  14. 14.
    Fuhr N (1992) Probabilistic models in information retrieval. Comput J 35(3):243–255MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fuhr N (2008) A probability ranking principle for interactive information retrieval. Inf Retr Boston 11(3):251–265. CrossRefGoogle Scholar
  16. 16.
    Fuhr N (2017) Some common mistakes in ir evaluation, and how they can be avoided. SIGIR Forum 51(3):32–41 ( Scholar
  17. 17.
    Fuhr N, Rölleke T (1998) HySpirit – a probabilistic inference engine for hypermedia retrieval in large databases. Proceedings of the 6th International Conference on Extending Database Technology (EDBT). Springer, Heidelberg, pp 24–38Google Scholar
  18. 18.
    Fuhr N, Giachanou A, Grefenstette G, Gurevych I, Hanselowski A, Jarvelin K, Jones R, Liu Y, Mothe J, Nejdl W et al (2018) An information nutritional label for online documents. ACM SIGIR Forum 51:46–66CrossRefGoogle Scholar
  19. 19.
    Hu M, Liu S, Wei F, Wu Y, Stasko J, Ma KL (2012) Breaking news on twitter. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Austin, TX, pp 2751–2754Google Scholar
  20. 20.
    Klein DO, Wueller JR (2017) Fake news: a legal perspective. J Internet Law 20(10):6–13Google Scholar
  21. 21.
    Levy R, Bilu Y, Hershcovich D, Aharoni E, Slonim N (2014) Context dependent claim detectionGoogle Scholar
  22. 22.
    Lippi M, Torroni P (2015) Context-independent claim detection for argument mining. Proceedings of the Twenty-Fourth International Conference on Artificial Intelligence, pp 185–191Google Scholar
  23. 23.
    Lippi M, Torroni P (2016a) Argument mining from speech: detecting claims in political debates. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), pp 2979–2985Google Scholar
  24. 24.
    Lippi M, Torroni P (2016b) Argumentation mining: state of the art and emerging trends. ACM Trans Internet Technol 16(2):10CrossRefGoogle Scholar
  25. 25.
    McClain CR (2017) Practices and promises of facebook for science outreach: becoming a nerd of trust. PLoS Biol 15(6):e2002020CrossRefGoogle Scholar
  26. 26.
    Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: can we trust what we rt? Proceedings of the first workshop on social media analytics. ACM, Washington DC, pp 71–79Google Scholar
  27. 27.
    Nguyen HV, Litman DJ (2015) Extracting argument and domain words for identifying argument components in texts. Proceedings of the 2nd Workshop on Argumentation Mining, pp 22–28Google Scholar
  28. 28.
    Peldszus A, Stede M (2015) An annotated corpus of argumentative microtexts. Proceedings of the First Conference on Argumentation, LisbonGoogle Scholar
  29. 29.
    Pennycook G, Cannon TD, Rand DG (2017) Prior exposure increases perceived accuracy of fake news. J Exp Psychol Gen. ( Scholar
  30. 30.
    Pfeifer U, Fuhr N, Huynh T (1995) Searching structured documents with the enhanced retrieval functionality of freeWAIS-sf and SFgate. Proceedings of the third International World-Wide Web Conference. Elsevier, Amsterdam, pp 1027–1036Google Scholar
  31. 31.
    Qazvinian V, Rosengren E, Radev DR, Mei Q (2011) Rumor has it: identifying misinformation in microblogs. Proceedings of EMNLP, pp 1589–1599Google Scholar
  32. 32.
    Reed C, Mochales Palau R, Rowe G, Moens MF (2008) Language resources for studying argument. Proceedings of the 6th conference on language resources and evaluation-LREC 2008. ELRA, Marrakech, pp 91–100Google Scholar
  33. 33.
    Sardianos C, Katakis IM, Petasis G, Karkaletsis V (2015p) Argument extraction from news. NAACL HLT 2015, p 56Google Scholar
  34. 34.
    Schaefer A, Jordan M, Klas CP, Fuhr N (2005) Active support for query formulation in virtual digital libraries: a case study with DAFFODIL. In: Rauber A, Christodoulakis C, Tjoa AM (eds) Proc. ECDL. Lecture Notes in Computer Science. Springer, HeidelbergGoogle Scholar
  35. 35.
    Sliwa A, Ma Y, Liu R, Borad N, Fatemeh Ziyaei S, Ghobadi M, Sabbah F (2018) Multi-lingual argumentative corpora in english, turkish, greek, albanian, croatian, serbian, macedonian, bulgarian, romanian and arabic. LREC 2018 Proceedings.Google Scholar
  36. 36.
    Suciu D, Olteanu D, Ré C, Koch C (2011) Probabilistic databases. Synthesis lectures on data management. Morgan & Claypool Publishers, San Rafael, CaliforniazbMATHGoogle Scholar
  37. 37.
    Swanson R, Ecker B, Walker M (2015) Argument mining: extracting arguments from online dialogue. Proceedings of 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2015), pp 217–227Google Scholar
  38. 38.
    Tran VT, Fuhr N (2012) Using eye-tracking with dynamic areas of interest for analyzing interactive information retrieval. In: Hersh WR, Callan J, Maarek Y, Sanderson M (eds) Proc. SIGIR. ACM, Prague, pp 1165–1166Google Scholar
  39. 39.
    Tran VT, Fuhr N (2013) Markov modeling for user interaction in retrieval. SIGIR 2013 Workshop on Modeling User Behavior for Information Retrieval Evaluation (MUBE 2013).Google Scholar
  40. 40.
    Tran V, Maxwell D, Fuhr N, Azzopardi L (2017) Personalised search time prediction using markov chains. Proceedings Of The 3rd ACM International Conference on the Theory of Information Retrieval., ICTIR ’17. ACM, New York, pp 1–1 Google Scholar
  41. 41.
    Tyers FM, Alperen MS (2010) South-east european times: a parallel corpus of balkan languages. Proceedings of the LREC Workshop on Exploitation of Multilingual Resources and Tools for Central and (South‑) Eastern European Languages, pp 49–53Google Scholar
  42. 42.
    Zobel J (2017) What we talk about when we talk about information retrieval. SIGIR Forum 51(3):18–26. CrossRefGoogle Scholar
  43. 43.
    Zubiaga A, Aker A, Bontcheva K, Liakata M, Procter R (2017) Detection and resolution of rumours in social media: a survey. ACM Comput Surv. Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering SciencesUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations