Advertisement

Annals of Microbiology

, Volume 69, Issue 9, pp 989–1000 | Cite as

Potential production of 2-phenylethanol and 2-phenylethylacetate by non-Saccharomyces yeasts from Agave durangensis

  • Pablo Jaciel Adame-Soto
  • Elva Teresa Aréchiga-Carvajal
  • Mercedes G López
  • Silvia Marina González-Herrera
  • Martha Rocio Moreno-Jiménez
  • Norma Urtiz-Estrada
  • Olga Miriam Rutiaga-QuiñonesEmail author
Original Article
  • 82 Downloads

Abstract

Introduction

The participation of non-Saccharomyces yeasts in fermentation processes is of great importance due to their participation in the formation of esters and superior alcohols, which confer characteristic aromas to beverages such as wine and mescal.

The aim

The aim of this study was identify and evaluate the potential aroma production of yeast native of Agave fermentation by the mescal production in Durango, Mexico. Isolated yeasts were molecularly identified by 5.8s ribosomal gene; the potential production of aromas was carried out in fermentations with the addition of l-phenylalanine and evaluated after 24 h of fermentation. Extraction and quantification of aromatic compounds by headspace solid-phase micro-extraction (HS-SPME) and gas chromatograph mass spectrometry (GC-MS).

Results

The isolated non-Saccharomyces yeasts could be classified into six different genera Saccharomyces cerevisiae, Clavispora lusitaniae, Torulaspora delbrueckii, Kluyveromyces dobzhanskii, Kluyveromyces marxianus, and Kluyveromyces sp. All probed strains presented a potential aroma production (ethyl acetate, isoamyl acetate, isoamyl alcohol, benzaldehyde, 2-phenylethyl butyrate, and phenylethyl propionate), particularly 2-phenylethanol and 2-phenylethylacetate; the levels found in the Kluyveromyces marxianus ITD0211 yeast have the highest 2-phenylethylacetate production at 203 mg/L and Kluyveromyces marxianus ITD0090 with a production of 2-phenylethanol at 1024 mg/L.

Conclusion

Non-Saccharomyces yeasts were isolated from the mescal fermentation in Durango; the Kluyveromyces genus is the most predominant. For the production of aromas, highlighting two strains of Kluyveromyces marxianus produces competitive quantities of compounds of great biotechnological interest such as 2-phenylethanol and 2-phenylethylacetate, without resorting to the genetic modification of yeasts or the optimization of the culture medium.

Keywords

Mescal Bioconversion Aroma l-Phenylalanine Kluyveromyces marxianus 

Notes

Funding

This work was supported by the Tecnologico Nacional de México [grant number 4551.12-P] and the Consejo Nacional de Ciencia y Tecnología (CONACyT) scholarship awarded to Pablo Jaciel Adame-Soto 435680.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animal

This article does not contain any studies with human or animal.

Informed consent

Not applicable.

References

  1. Beckner Whitener ME, Carlin S, Jacobson D et al (2015) Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: a targeted approach. LWT - Food Sci Technol 64:412–422.  https://doi.org/10.1016/j.lwt.2015.05.018 CrossRefGoogle Scholar
  2. Belloch C, Barrio E, Uruburu F et al (1997) Characterisation of four species of the genus Kluyveromyces by mitochondrial DNA restriction analysis. Syst Appl Microbiol 20:397–408.  https://doi.org/10.1016/S0723-2020(97)80008-2 CrossRefGoogle Scholar
  3. Belloch C, Fernández-Espinar T, Querol A et al (2002) An analysis of inter- and intraspecific genetic variabilities in the Kluyveromyces marxianus group of yeast species for the reconsideration of the K. lactis taxon. Yeast 19:257–268.  https://doi.org/10.1002/yea.832 CrossRefGoogle Scholar
  4. Calvo-Gómez O, Morales-López J, López MG (2004) Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation. J Chromatogr A 1036:91–93.  https://doi.org/10.1016/j.chroma.2004.02.072 CrossRefGoogle Scholar
  5. Celińska E, Kubiak P, Białas W et al (2013) Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J Ind Microbiol Biotechnol 40:389–392.  https://doi.org/10.1007/s10295-013-1240-3 CrossRefGoogle Scholar
  6. Chang JJ, Ho CY, Huang CC, et al. (2014) Flavor compound-producing yeast strains. US Patent No. 8703474 B2Google Scholar
  7. Chreptowicz K, Wielechowska M, Główczyk-Zubek J, Rybak E, Mierzejewska J (2016) Production of natural 2-phenylethanol: from biotransformation to purified product. Food Bioprod Process 100:275–281.  https://doi.org/10.1016/j.fbp.2016.07.011 CrossRefGoogle Scholar
  8. Chreptowicz K, Sternicka MK, Kowalska PD, Mierzejewska J (2018) Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Lett Appl Microbiol 66:153–160CrossRefGoogle Scholar
  9. Ciani M, Morales P, Comitini F et al (2016) Non-conventional yeast species for lowering ethanol content of wines. Front Microbiol 7:1–13.  https://doi.org/10.3389/fmicb.2016.00642 Google Scholar
  10. Cordente AG, Curtin CD, Varela C, Pretorius IS (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96:601–618.  https://doi.org/10.1007/s00253-012-4370-z CrossRefGoogle Scholar
  11. De León Rodríguez A, Escalante Minakata MDP, Jiménez García MI, Ordoñez Acevedo LG, Flores Flores JL, Barba de la Rosa AP (2008) Characterization of volatile compounds from ethnic Agave alcoholic beverages by gas chromatography-mass spectrometry. Food Technol Biotechnol 46:448–455Google Scholar
  12. de Lima LA, Diniz RHS, de Queiroz MV, Fietto LG, Silveira WB (2018) Screening of yeasts isolated from Brazilian environments for the 2-phenylethanol (2-PE) production. Biotechnol Bioprocess Eng 23:326–332.  https://doi.org/10.1007/s12257-018-0119-6 CrossRefGoogle Scholar
  13. De los Rios-Deras GC, Rutiaga-Quiñones OM, López-Miranda J, Páez-Lerma J, López MG, Soto-Cruz NO (2015) Improving Agave durangensis must for enhanced fermentation. Effects on mezcal composition and sensory properties. Rev Mex Ing Quím 14:363–371 http://www.redalyc.org/articulo.oa?id=62041194013 Google Scholar
  14. Díaz-Montaño DM, Délia ML, Estarrón-Espinosa M, Strehaiano P (2008) Fermentative capability and aroma compound production by yeast strains isolated from Agave tequilana Weber juice. Enzym Microb Technol 42:608–616.  https://doi.org/10.1016/j.enzmictec.2007.12.007 CrossRefGoogle Scholar
  15. Escalante-Minakata P, Blaschek HP, Barba De La Rosa AP et al (2008) Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana. Lett Appl Microbiol 46:626–630.  https://doi.org/10.1111/j.1472-765X.2008.02359.x CrossRefGoogle Scholar
  16. Eshkol N, Sendovski M, Bahalul M et al (2009) Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106:534–542.  https://doi.org/10.1111/j.1365-2672.2008.04023.x CrossRefGoogle Scholar
  17. Etschmann MMW, Schrader J (2006) An aqueous–organic two-phase bioprocess for efficient production of the natural aroma chemicals 2-phenylethanol and 2-phenylethylacetate with yeast. Appl Microbiol Biotechnol 71:440–443.  https://doi.org/10.1007/s00253-005-0281-6 CrossRefGoogle Scholar
  18. Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25:531–536.  https://doi.org/10.1023/A:1022890119847 CrossRefGoogle Scholar
  19. Etschmann MMW, Sell D, Schrader J (2004) Medium optimization for the production of the aroma compound 2-phenylethanol using a genetic algorithm. J Mol Cat B: Enzymatic 29:187–193.  https://doi.org/10.1016/j.molcatb.2003.10.014 CrossRefGoogle Scholar
  20. Etschmann MMW, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92:624–634CrossRefGoogle Scholar
  21. Fabre CE, Blanc PJ, Goma G (1998) Production of 2-phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog 14:270–274.  https://doi.org/10.1021/bp9701022 CrossRefGoogle Scholar
  22. Garavaglia J, Flôres SH, Pizzolato TM et al (2007) Bioconversion of L-phenylalanine into 2-phenylethanol by Kluyveromyces marxianus in grape must cultures. World J Microb Biotechnol 23:1273–1279CrossRefGoogle Scholar
  23. Gethins L, Guneser O, Demirkol A et al (2015) Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus. Yeast 32:67–76.  https://doi.org/10.1002/yea.3047 Google Scholar
  24. González B, Vázquez J, Morcillo-Parra MÁ et al (2018) The production of aromatic alcohols in non- Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol 74:64–74.  https://doi.org/10.1016/j.fm.2018.03.003 CrossRefGoogle Scholar
  25. Guo D, Zhang L, Pan H, Li X (2017) Metabolic engineering of Escherichia coli for production of 2-phenylethylacetate from L-phenylalanine. Microbiology Open 6:1–5.  https://doi.org/10.1002/mbo3.486 CrossRefGoogle Scholar
  26. Hazelwood LH, Daran J-MG, van Maris AJA et al (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266.  https://doi.org/10.1128/AEM.02625-07 CrossRefGoogle Scholar
  27. Hernández-Carbajal G, Rutiaga-Quiñones OM, Pérez-Silva A et al (2013) Screening of native yeast from Agave duranguensis fermentation for isoamyl acetate production. Brazilian Arch Biol Technol 56:357–363.  https://doi.org/10.1590/S1516-89132013000300002 CrossRefGoogle Scholar
  28. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237.  https://doi.org/10.1111/1567-1364.12111 CrossRefGoogle Scholar
  29. Kirchmayr MR, Segura-García LE, Lappe-Oliveras P et al (2017) Impact of environmental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of mezcal in Oaxaca. LWT - Food Sci Technol 79:160–169.  https://doi.org/10.1016/j.lwt.2016.12.052 CrossRefGoogle Scholar
  30. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  31. Lachance MA (1995) Yeast communities in a natural tequila fermentation. Antonie Van Leeuwenhoek 68:151–160.  https://doi.org/10.1007/BF00873100 CrossRefGoogle Scholar
  32. Lane MM, Morrissey JP (2010) Kluyveromyces marxianus: a yeast emerging from its sister’s shadow. Fungal Biol Rev 24:17–26.  https://doi.org/10.1016/j.fbr.2010.01.001 CrossRefGoogle Scholar
  33. Lappe P, Ulloa M, Arce-Arocha G, Caceres-Farfan M, Tapia-Tussell R, Pérez-Brito D, Larque A (2004) Isolation and identification of the mycobiota present in Agave fourcroydes. Eleventh International Congress of Yeast, Book of AbstractsGoogle Scholar
  34. Lappe-Oliveras P, Moreno-Terrazas R, Arrizón-Gaviño J, Herrera-Suárez T, García-Mendoza A, Gschaedler-Mathis A (2008) Yeasts associated with the production of Mexican alcoholic nondistilled and distilled Agave beverages. FEMS Yeast Res.  https://doi.org/10.1111/j.1567-1364.2008.00430.x
  35. Liu SQ, Holland R, Crow VL (2004) Esters and their biosynthesis in fermented dairy products: a review. Int Dairy J 14:923–945CrossRefGoogle Scholar
  36. Loser C, Urit T, Bley T (2014) Perspectives for the biotechnological production of ethyl acetate by yeasts. Appl Microbiol Biotechnol 98:5397–5415CrossRefGoogle Scholar
  37. Lu X, Wang Y, Zong H, Ji H, Zhuge B, Dong Z (2016) Bioconversion of L-phenylalanine to 2-phenylethanol by the novel stress-tolerant yeast Candida glycerinogenes WL2002–5. Bioeng 5979:1–6Google Scholar
  38. Martell Nevárez MA, Córdova Gurrola EE, López Miranda J et al (2011) Effect of fermentation temperature on chemical composition of mescals made from Agave duranguensis juice with different native yeast genera. African J Microbiol Res 5:3669–3676.  https://doi.org/10.5897/AJMR11.467 CrossRefGoogle Scholar
  39. Martínez O, Sánchez A, Font X, Barrena R (2018) Bioproduction of 2-phenylethanol and 2-phenethyl acetate by Kluyveromyces marxianus through the solid-state fermentation of sugarcane bagasse. Microbiol Biotechnol Appl.  https://doi.org/10.1007/s00253-018-8964-y
  40. Masneuf-Pomarede I, Bely M, Marullo P, Albertin W (2016) The genetics of non-conventional wine yeasts: current knowledge and future challenges. Front Microbiol 6.  https://doi.org/10.3389/fmicb.2015.01563
  41. Mei J, Min H, Lu Z (2009) Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique. Process Biochem 44:886–890.  https://doi.org/10.1016/j.procbio.2009.04.012 CrossRefGoogle Scholar
  42. Moreira N, Mendes F, Hogg T, Vasconcelos I (2005) Alcohols, esters and heavy Sulphur compounds production by pure and mixed cultures of apiculate wine yeasts. Int J Food Microbiol 103:285–294.  https://doi.org/10.1016/j.ijfoodmicro.2004.12.029 CrossRefGoogle Scholar
  43. Morrissey JP, Etschmann MMW, Schrader J, De Billerbeck GM (2015) Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast 32:3–16.  https://doi.org/10.1002/yea.3054 Google Scholar
  44. Narváez-Zapata JA, Rojas-Herrera RA, Rodríguez-Luna IC, Larralde-Corona CP (2010) Culture-independent analysis of lactic acid bacteria diversity associated with mezcal fermentation. Curr Microbiol 61:444–450.  https://doi.org/10.1007/s00284-010-9636-z CrossRefGoogle Scholar
  45. Nuñez-Guerrero ME, Páez-Lerma JB, Rutiaga-Quiñones OM et al (2016) Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiol 54:91–97.  https://doi.org/10.1016/j.fm.2015.10.011 CrossRefGoogle Scholar
  46. Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP (2018) Ploidy variation in Kluyveromyces marxianus separates dairy and non-dairy isolates. Front Genet 9:0–16.  https://doi.org/10.3389/fgene.2018.00094 CrossRefGoogle Scholar
  47. Padilla B, García-Fernández D, González B et al (2016) Yeast biodiversity from DOQ Priorat Uninoculated fermentations. Front Microbiol 7:930Google Scholar
  48. Páez-Lerma JB, Rutiaga-Quiñones OM, Aguilar-González C et al (2010) Agave duranguensis predominant microorganisms along alcoholic fermentation of Agave duranguensis. Agrofaz 10:167–173Google Scholar
  49. Páez-Lerma JB, Arias-García A, Rutiaga-Quiñones OM et al (2013) Yeasts isolated from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnol 27:342–356.  https://doi.org/10.1080/08905436.2013.840788 CrossRefGoogle Scholar
  50. Pérez-Brito D, Magaña-Alvarez A, Lappe-Oliveras P et al (2015) Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting. J Microbiol 53:14–20.  https://doi.org/10.1007/s12275-015-4373-4 CrossRefGoogle Scholar
  51. Pires EJ, Teixeira JA, Brányik T, Vicente AA (2014) Yeast: the soul of beer’s aroma - a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98:1937–1949.  https://doi.org/10.1007/s00253-013-5470-0 CrossRefGoogle Scholar
  52. Rodrigues de Miranda L (1979) Clavispora, a new yeast genus of the Saccharomycetales. Antonie Van Leeuwenhoek 45:479–483.  https://doi.org/10.1007/BF00443285 CrossRefGoogle Scholar
  53. Rodríguez-Sifuentes L, Páez-Lerma JB, Rutiaga-Quiñones OM et al (2014) Identification of a yeast strain as a potential stuck wine fermentation restarter: a kinetic characterization. CYTA - J Food 12:1–8.  https://doi.org/10.1080/19476337.2013.776637 CrossRefGoogle Scholar
  54. Rojas V, Gil JV, Piaga F, Manzanares P (2001) Studies on acetate ester production by non-Saccharomyces wine yeasts. Int J Food Microbiol 70:283–289CrossRefGoogle Scholar
  55. Rutiaga-Quiñones OM, Córdova É, Martell-Nevárez MA et al (2012) Volatile compound production in Agave duranguensis juice fermentations using four native yeasts and NH 4Cl supplementation. Eur Food Res Technol 235:29–35.  https://doi.org/10.1007/s00217-012-1729-4 CrossRefGoogle Scholar
  56. Sambrook J, Russell RW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold spring harbor, New YorkGoogle Scholar
  57. Schrader J, Etschmann MM, Sell D et al (2004) Applied biocatalysis for the synthesis of natural flavour compounds--current industrial processes and future prospects. Biotechnol Lett 26:463–472.  https://doi.org/10.1023/B:BILE.0000019576.80594.0e CrossRefGoogle Scholar
  58. Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. Microbiol Biotechnol 38:1145–1159.  https://doi.org/10.1007/s10295-011-1018-4 CrossRefGoogle Scholar
  59. Sukhotina NN, Naumova ES, Naumov GI (2006) Molecular polymorphism of the yeast Kluyveromyces dobzhanskii: geographic populations. Dokl Biochem Biophys 409:236–240.  https://doi.org/10.1134/S1607672906040120 CrossRefGoogle Scholar
  60. Verdugo-Valdez A, Segura-Garcia L, Kirchmayr M, Ramírez-Rodríguez P, González-Esquinca A, Coria R, Gschaedler-Mathis A (2011) Yeast communities associated with artisanal mezcal fermentations from Agave salmiana. Anton Leeuw Int J Gen Mol Microbiol 100:497–506.  https://doi.org/10.1007/s10482-011-9605-y CrossRefGoogle Scholar
  61. Viana F, Belloch C, Vallés S, Manzanares P (2011) Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production. Int J Food Microbiol 151:235–240CrossRefGoogle Scholar
  62. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, Cambridge, pp 315–322Google Scholar
  63. Yin S, Zhou H, Xiao X, Lang T, Liang J, Wang C (2015) Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains. Curr Microbiol 70:762–767.  https://doi.org/10.1007/s00284-015-0785-y CrossRefGoogle Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  • Pablo Jaciel Adame-Soto
    • 1
  • Elva Teresa Aréchiga-Carvajal
    • 2
  • Mercedes G López
    • 3
  • Silvia Marina González-Herrera
    • 1
  • Martha Rocio Moreno-Jiménez
    • 1
  • Norma Urtiz-Estrada
    • 4
  • Olga Miriam Rutiaga-Quiñones
    • 1
    Email author
  1. 1.Departamento de Ingenierías Química y BioquímicaTecnológico Nacional de México/ Instituto Tecnológico de DurangoDurangoMexico
  2. 2.Departamento de Microbiología e Inmunología, Unidad de Manipulación Genética del Laboratorio de Micología y Fitopatología. Unidad C. Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo LeónSan Nicolás de Los GarzaMexico
  3. 3.Departamento de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados del IPN, Unidad IrapuatoIrapuatoMexico
  4. 4.Facultad de Ciencias Químicas-Laboratorio de Genética molecularUniversidad Juárez del Estado de DurangoDurangoMexico

Personalised recommendations