Advertisement

The Mo- and Fe-nitrogenases of the endophyte Kosakonia sp. UYSO10 are necessary for growth promotion of sugarcane

  • Cecilia Taulé
  • Hugo Luizzi
  • Martín Beracochea
  • Cintia Mareque
  • Raúl Platero
  • Federico BattistoniEmail author
Original Article
  • 20 Downloads

Abstract

Aim

Sugarcane is a multipurpose crop primarily used to produce sugar, energy and bioethanol. It requires high amounts of N-fertilization for optimal growth, which increases production costs and environmental degradation. The contribution of biological nitrogen fixation to Uruguayan commercial sugarcane cultivars was demonstrated previously, and diazotrophic bacteria that were isolated from the stems were characterized and identified. From this collection, the isolate UYSO10 related to the Kosakonia genus (formerly Enterobacter) was described as a plant growth-promoting endophyte of sugarcane plants.

Purpose

To evaluate the effect of the inoculation of wild-type and nitrogenase-deficient strains of Kosakonia sp. UYSO10 on sugarcane growth promotion under non-sterile conditions.

Methods

Kosakonia sp. UYSO10 was inoculated onto sugarcane setts for plant growth promotion greenhouse experiments. Single and double mutants resulting to the nitrogenase-encoding genes (nifH, anfH) were constructed, and the phenotypes were evaluated in vitro and in vivo.

Results

Kosakonia sp. UYSO10 is able to promote sugarcane growth under non-sterile conditions, that strain UYSO10 harbors two functional nitrogenases and the inactivation of both nitrogenase-encoding genes diminish its capacity of promoting growth on sugarcane.

Conclusion

All together, the results obtained showed that the biological nitrogen fixation ability of Kosakonia sp. UYSO10 is required for sugarcane growth promotion.

Keywords

BNF Nitrogenase mutants nifH anfH 

Abbreviations

BNF

Biological nitrogen fixation

PGP

Plant growth promotion

PGPB

Plant growth-promoting bacteria

Pi

Post-inoculation

Notes

Funding

This work was supported by grants from the Uruguayan Fund for the Promotion of Agricultural Technology (Fondo de Promoción de Tecnología Agropecuaria FPTA-275 and 331-INIA), the Uruguayan Program for the Development of the Basic Sciences (Programa de Desarrollo de las Ciencias Básicas-PEDECIBA), the Posgrade Academic Commission-UdelaR (Comisión Académica de Posgrado), and the Uruguayan National Agency for Innovation and Research (Agencia Nacional de Innovación e Investigación-ANII). The authors are very grateful to Ing. Agr. Fernando Hackembruch from the Agriculture Department of the Alcoholes Uruguay S.A.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

N/A.

Informed consent

N/A.

Supplementary material

13213_2019_1466_MOESM1_ESM.doc (72.2 mb)
ESM 1 (DOC 73889 kb)

References

  1. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12CrossRefGoogle Scholar
  2. Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104CrossRefGoogle Scholar
  3. Bergottini VM, Filippidou S, Junier T, Johnson S, Chain PS, Otegui MB, Zapata PD, Junier P (2015) Genome sequence of Kosakonia radicincitans strain YD4, a plant growth-promoting rhizobacterium isolated from yerba mate (Ilex paraguariensis St Hill). Genome Announc 3:e00239–e00215CrossRefGoogle Scholar
  4. Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L, Magalhães V, Alquéres S, Cardoso A, Almeida W, Loureiro M, Nogueira E, Cidade D, Oliveira D, Simão T, Macedo J, Valadão A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L, Figueiredo D, Montano H, Junior J, de Souza Filho G, Martin Quintana Flores V, Ferreira B, Branco A, Gonzalez P, Guillobel H, Lemos M, Seibel L, Macedo J, Alves-Ferreira M, Sachetto-Martins G, Coelho A, Santos E, Amaral G, Neves A, Pacheco A, Carvalho D, Lery L, Bisch P, Rössle SC, Ürményi T, Rael Pereira A, Silva R, Rondinelli E, von Krüger W, Martins O, Baldani J, Ferreira PC (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450CrossRefGoogle Scholar
  5. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov. Syst Appl Microbiol 36:309–319CrossRefGoogle Scholar
  6. Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670CrossRefGoogle Scholar
  7. Carvalho TLG, Ferreira PCG, Hemerly AS (2011) Sugarcane genetic controls involved in the association with beneficial endophytic nitrogen fixing bacteria. Trop Plant Biol 4:31–41CrossRefGoogle Scholar
  8. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  9. da Silva M, de Souza AC, de Oliveira PJ, Xavier GR, Rumjanek NG, de Barros Soares LH, Reis VM (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243CrossRefGoogle Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  11. Ekandjo LK, Ruppel S, Remus R, Witzel K, Patz S, Becker Y (2018) Site-directed mutagenesis to deactivate two nitrogenase isozymes of Kosakonia radicincitans DSM16656T. Can J Microbiol 64:97–106CrossRefGoogle Scholar
  12. Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652CrossRefGoogle Scholar
  13. Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hartmann A (2012) Molecular characterization of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99CrossRefGoogle Scholar
  14. Fogliata F (1995) Agronomía de la caña de azúcar. In: El graduado (Ed.) Tecnología, costos y producción. Tucumán, Argentina, pp 1–10Google Scholar
  15. Friesen ML (2013) Microbially mediated plant functional traits. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, 1st edn. John Wiley & Sons, New Jersey, pp 87–102CrossRefGoogle Scholar
  16. Govindarajan M, Balandreau J, Kwon SW, Weon H-Y, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37CrossRefGoogle Scholar
  17. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  18. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580Google Scholar
  19. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320CrossRefGoogle Scholar
  20. Hardy RW, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207CrossRefGoogle Scholar
  21. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77:61–68CrossRefGoogle Scholar
  22. InfoStat (2008). Grupo InfoStat, FCA, Universidad Nacional de Cordóba, ArgentinaGoogle Scholar
  23. James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. F Crop Res 65:197–209CrossRefGoogle Scholar
  24. Joerger RD, Loveless TM, Pau RN, Mitchenall LA, Simon BH, Bishop PE (1990) Nucleotide sequences and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii. J Bacteriol 172:3400–3408CrossRefGoogle Scholar
  25. Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221CrossRefGoogle Scholar
  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  27. Lehman LJ, Roberts GP (1991) Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol 173:5705–5711CrossRefGoogle Scholar
  28. Li Y, Li S, Chen M, Peng G, Tan Z, An Q (2017) Complete genome sequence of Kosakonia oryzae type strain Ola 51T. Stand Genomic Sci 12:8–11CrossRefGoogle Scholar
  29. Lin L, Li Z, Hu C, Zhang X, Chang S, Yang L, Li Y, An Q (2012) Plant growth-promoting nitrogen-fixing Enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27:391–398CrossRefGoogle Scholar
  30. Madhaiyan M, Peng N, Te NS, Hsin IC, Lin C, Lin F, Reddy C, Yan H, Ji L (2013) Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 6:140CrossRefGoogle Scholar
  31. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716CrossRefGoogle Scholar
  32. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157CrossRefGoogle Scholar
  33. Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95CrossRefGoogle Scholar
  34. Mirza BS, Rodrigues JL (2012) Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Appl Environ Microbiol 78:5542–5549CrossRefGoogle Scholar
  35. Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J, Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794CrossRefGoogle Scholar
  36. Oliveira ALM, de Canuto EL, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32CrossRefGoogle Scholar
  37. Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2 -fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215CrossRefGoogle Scholar
  38. Reis Junior F, Reis VM, Da Silva L, Dobereiner J (2000) Levantamento e quantificaçao de bactérias diazotróficas em diferentes genotipos de cana-de-açúcar (Saccharum spp.). Pesqui Agropecuária Bras 35:985–994CrossRefGoogle Scholar
  39. Schneider K, Müller A, Schramm U, Klipp W (1991) Demonstration of a molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant of Rhodobacter capsulatus. Eur J Biochem 195:653–661CrossRefGoogle Scholar
  40. Schulz BJE, Boyle CJC (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  41. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif mutant strains. Mol Plant-Microbe Interact 14:358–366CrossRefGoogle Scholar
  42. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de Las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI, Platero R, de Lorenzo V (2013) The standard European vector architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675CrossRefGoogle Scholar
  43. Sinclair TR, Rufty TW (2012) Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob Food Sec 1:94–98CrossRefGoogle Scholar
  44. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010CrossRefGoogle Scholar
  45. Taulé C, Castillo A, Villar S, Olivares F, Battistoni F (2016) Endophytic colonization of sugarcane (Saccharum officinarum) by the novel diazotrophs Shinella sp. UYSO24 and Enterobacter sp. UYSO10. Plant Soil 403:403–418CrossRefGoogle Scholar
  46. Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis VM, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49CrossRefGoogle Scholar
  47. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449CrossRefGoogle Scholar
  48. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S (2012) Genome sequence of Enterobacter radicincitans DSM16656(T), a plant growth-promoting endophyte. J Bacteriol 194:5469CrossRefGoogle Scholar
  49. Zhu B, Chen M, Lin L, Yang L, Li Y, An Q (2012) Genome sequence of Enterobacter SP. strain SP1, an endophytic nitrogen-fixing bacterium isolated from sugarcane. J Bacteriol 194:6963–6964CrossRefGoogle Scholar

Copyright information

© Università degli studi di Milano 2019

Authors and Affiliations

  1. 1.Microbial Biochemistry and Genomics DepartmentClemente Estable Biological Research InstituteMontevideoUruguay

Personalised recommendations